File size: 45,065 Bytes
a04ed0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
import numpy as np
import math
from typing import Dict, List, Optional, Any, Tuple
from dataclasses import dataclass, field
from enum import Enum
import warnings
import json
import os
from openai import OpenAI
import time
import gradio as gr

warnings.filterwarnings("ignore")


class RiskProfile(Enum):
    CONSERVATIVE = "conservative"
    BALANCED = "balanced"
    AGGRESSIVE = "aggressive"


class ProblemType(Enum):
    STATIC = "static"
    DYNAMIC = "dynamic"


class ComplexityLevel(Enum):
    LOW = "low"
    MEDIUM = "medium"
    HIGH = "high"


@dataclass
class DecisionOption:
    name: str
    attributes: Dict[str, float]
    constraints: Dict[str, Any] = field(default_factory=dict)


@dataclass
class DecisionContext:
    description: str
    user_profile: Dict[str, Any]
    options: List[DecisionOption]
    objectives: List[str]
    constraints: List[str]


@dataclass
class DecisionFactors:
    primary_factors: List[Dict[str, Any]]
    weights: Dict[str, float]
    risk_profile: RiskProfile
    evaluation_criteria: List[str]


@dataclass
class ProblemAnalysis:
    problem_type: ProblemType
    complexity_level: ComplexityLevel
    recommended_iterations: int
    early_stop_threshold: float
    explanation: str


class LLMExtractor:
    def __init__(self):
        self.client = OpenAI(
            api_key=os.getenv("OPENAI_API_KEY"),
            base_url=os.getenv("OPENAI_API_BASE"),
        )

    def _call_llm(self, prompt: str, system_prompt: str = None) -> str:
        messages = []
        if system_prompt:
            messages.append({"role": "system", "content": system_prompt})
        messages.append({"role": "user", "content": prompt})

        try:
            response = self.client.chat.completions.create(
                model=os.getenv("OPENAI_API_MODEL"),
                messages=messages,
                temperature=0.1,
                max_tokens=1500,
                response_format={"type": "json_object"},
            )
            return response.choices[0].message.content.replace("```json", "").replace("```", "")
        except Exception as e:
            print(f"LLM调用失败: {e}")
            raise

    def analyze_problem_type(self, user_input: str) -> ProblemAnalysis:
        """分析问题类型和复杂度"""
        system_prompt = """你是一个决策分析专家。请分析用户的决策问题,判断:
1. 问题类型:静态决策(选项固定,结果确定)还是动态博弈(涉及多轮决策、对手策略、环境变化)
2. 复杂度:低(简单比较)、中(多因素权衡)、高(复杂约束和不确定性)
3. 推荐的MCTS迭代次数和早停阈值
请以JSON格式返回结果。"""

        prompt = f"""请分析以下决策问题:
{user_input}

返回格式,请使用 JSON 格式返回,不要进行解释说明:
{{
    "problem_type": "static/dynamic",
    "complexity_level": "low/medium/high",
    "recommended_iterations": 数值,
    "early_stop_threshold": 数值,
    "explanation": "分析说明"
}}

判断标准:
- 静态决策:选择学校、购买产品、投资组合等固定选项比较
- 动态博弈:游戏策略、谈判、竞争对手分析等涉及多轮交互
- 低复杂度:2-3个选项,1-3个主要因素
- 中复杂度:3-5个选项,3-6个因素
- 高复杂度:5+个选项,6+个因素或复杂约束"""

        response = self._call_llm(prompt, system_prompt)
        try:
            data = json.loads(response)
            return ProblemAnalysis(
                problem_type=(ProblemType.STATIC if data["problem_type"] == "static" else ProblemType.DYNAMIC),
                complexity_level=ComplexityLevel(data["complexity_level"]),
                recommended_iterations=data["recommended_iterations"],
                early_stop_threshold=data["early_stop_threshold"],
                explanation=data["explanation"],
            )
        except Exception as e:
            print(f"解析问题分析失败,使用默认设置: {e}")
            return ProblemAnalysis(
                problem_type=ProblemType.STATIC,
                complexity_level=ComplexityLevel.MEDIUM,
                recommended_iterations=1000,
                early_stop_threshold=0.01,
                explanation="使用默认分析结果",
            )

    def extract_decision_factors(self, user_input: str) -> DecisionContext:
        system_prompt = """你是一个决策分析专家。请分析用户的决策需求,提取以下信息:
1. 决策选项(options):每个选项的名称和关键属性,只返回必须满足约束条件的决策选项(比如用户拥有的分数、积分、点数、数额必须大于对方拥有或要求数额)
2. 决策目标(objectives):用户想要优化的目标
3. 约束条件(constraints):必须满足的限制条件
4. 用户特征(user_profile):风险偏好、预算、偏好等
请以JSON格式返回结果。"""

        prompt = f"""请分析以下决策需求:
{user_input}

返回格式示例,请使用 JSON 格式返回,不要进行解释说明:
{{
    "description": "决策描述",
    "options": [
        {{
            "name": "选项名称",
            "attributes": {{
                "属性1": 数值,
                "属性2": 数值
            }}
        }}
    ],
    "objectives": ["目标1", "目标2"],
    "constraints": ["约束1", "约束2"],
    "user_profile": {{
        "risk_preference": "conservative/balanced/aggressive",
        "其他特征": "值"
    }}
}}"""

        response = self._call_llm(prompt, system_prompt)
        try:
            data = json.loads(response)
            options = [
                DecisionOption(
                    name=opt["name"],
                    attributes=opt["attributes"],
                    constraints=opt.get("constraints", {}),
                )
                for opt in data["options"]
            ]

            return DecisionContext(
                description=data["description"],
                user_profile=data["user_profile"],
                options=options,
                objectives=data["objectives"],
                constraints=data["constraints"],
            )
        except Exception as e:
            print(f"解析LLM响应失败: {e}")
            raise

    def extract_evaluation_strategy(self, context: DecisionContext) -> DecisionFactors:
        system_prompt = """你是一个决策策略专家。基于决策上下文,设计评估策略:
1. 识别主要决策因子及其重要性
2. 根据用户风险偏好分配权重
3. 定义评估标准
4. 只考虑用户决策描述涉及的决策因子,不要添加额外因子"""

        prompt = f"""基于以下决策上下文设计评估策略:
决策描述:{context.description}
目标:{', '.join(context.objectives)}
约束:{', '.join(context.constraints)}
用户特征:{json.dumps(context.user_profile, ensure_ascii=False)}

请返回JSON格式的评估策略,不要进行解释说明:
{{
    "primary_factors": [
        {{
            "name": "因子名称",
            "type": "quantitative/qualitative",
            "importance": "high/medium/low",
            "uncertainty_level": 0.1
        }}
    ],
    "weights": {{
        "因子1": 权重,
        "因子2": 权重
    }},
    "evaluation_criteria": ["标准1", "标准2"],
    "risk_adjustment": {{
        "method": "utility_function",
        "parameter": 0.5
    }}
}}"""

        response = self._call_llm(prompt, system_prompt)

        try:
            data = json.loads(response)
            risk_pref = context.user_profile.get("risk_preference", "balanced").lower()
            risk_profile = RiskProfile.CONSERVATIVE
            if risk_pref == "balanced":
                risk_profile = RiskProfile.BALANCED
            elif risk_pref == "aggressive":
                risk_profile = RiskProfile.AGGRESSIVE

            return DecisionFactors(
                primary_factors=data["primary_factors"],
                weights=data["weights"],
                risk_profile=risk_profile,
                evaluation_criteria=data["evaluation_criteria"],
            )
        except Exception as e:
            print(f"解析评估策略失败: {e}")
            raise

    def batch_evaluate_options(
        self, context: DecisionContext, decision_factors: DecisionFactors
    ) -> Dict[str, Tuple[float, Dict[str, float]]]:
        options_data = []
        for opt in context.options:
            options_data.append({"name": opt.name, "attributes": opt.attributes})

        evaluation_prompt = f"""批量评估以下所有选项:
选项列表:{json.dumps(options_data, ensure_ascii=False)}
目标:{', '.join(context.objectives)}
约束:{', '.join(context.constraints)}
评估标准:{', '.join(decision_factors.evaluation_criteria)}
权重:{json.dumps(decision_factors.weights, ensure_ascii=False)}

请为每个选项的每个评估维度打分(0-1),并计算加权综合分,请使用 JSON 格式返回,不要进行解释说明:
{{
    "evaluations": {{
        "选项名称1": {{
            "dimension_scores": {{
                "维度1": 分数,
                "维度2": 分数
            }},
            "weighted_score": 加权综合分
        }},
        "选项名称2": {{
            "dimension_scores": {{
                "维度1": 分数,
                "维度2": 分数
            }},
            "weighted_score": 加权综合分
        }}
    }}
}}"""

        try:
            response = self._call_llm(evaluation_prompt)
            eval_data = json.loads(response)

            results = {}
            for option_name, eval_result in eval_data["evaluations"].items():
                weighted_score = eval_result["weighted_score"]
                dimension_scores = eval_result["dimension_scores"]
                results[option_name] = (weighted_score, dimension_scores)

            return results
        except Exception as e:
            print(f"批量评估失败,使用简单评估: {e}")
            return self._simple_batch_evaluate(context, decision_factors)

    def _simple_batch_evaluate(
        self, context: DecisionContext, decision_factors: DecisionFactors
    ) -> Dict[str, Tuple[float, Dict[str, float]]]:
        results = {}
        for option in context.options:
            scores = {}
            total_score = 0

            for attr_name, attr_value in option.attributes.items():
                normalized_score = min(1.0, attr_value / 100.0) if isinstance(attr_value, (int, float)) else 0.5
                scores[attr_name] = normalized_score
                weight = decision_factors.weights.get(attr_name, 1.0 / len(option.attributes))
                total_score += weight * normalized_score

            results[option.name] = (total_score, scores)

        return results


class UtilityFunction:
    def __init__(self, risk_aversion: float = 0.5):
        self.risk_aversion = risk_aversion

    def calculate_utility(self, value: float) -> float:
        if self.risk_aversion == 0:
            return value
        elif self.risk_aversion > 0:
            return 1 - math.exp(-self.risk_aversion * value)
        else:
            return value ** (1 + abs(self.risk_aversion))


class UtilityEvaluator:
    def __init__(
        self,
        decision_factors: DecisionFactors,
        pre_evaluations: Dict[str, Tuple[float, Dict[str, float]]],
    ):
        self.decision_factors = decision_factors
        self.utility_func = UtilityFunction(self._get_risk_aversion())
        self.pre_evaluations = pre_evaluations

    def _get_risk_aversion(self) -> float:
        if self.decision_factors.risk_profile == RiskProfile.CONSERVATIVE:
            return 1.0
        elif self.decision_factors.risk_profile == RiskProfile.BALANCED:
            return 0.5
        else:
            return -0.3

    def evaluate_option(self, option: DecisionOption, context: DecisionContext) -> Tuple[float, Dict[str, float]]:
        if option.name in self.pre_evaluations:
            score, dimension_scores = self.pre_evaluations[option.name]
            utility_score = self.utility_func.calculate_utility(score)
            return utility_score, dimension_scores

        return self._simple_evaluate(option, context)

    def _simple_evaluate(self, option: DecisionOption, context: DecisionContext) -> Tuple[float, Dict[str, float]]:
        scores = {}
        total_score = 0

        for attr_name, attr_value in option.attributes.items():
            normalized_score = min(1.0, attr_value / 100.0) if isinstance(attr_value, (int, float)) else 0.5
            scores[attr_name] = normalized_score
            weight = self.decision_factors.weights.get(attr_name, 1.0 / len(option.attributes))
            total_score += weight * normalized_score

        return total_score, scores


class TraditionalEvaluator:
    """传统的加权评分方法"""

    def __init__(
        self,
        decision_factors: DecisionFactors,
        pre_evaluations: Dict[str, Tuple[float, Dict[str, float]]],
    ):
        self.decision_factors = decision_factors
        self.utility_func = UtilityFunction(self._get_risk_aversion())
        self.pre_evaluations = pre_evaluations

    def _get_risk_aversion(self) -> float:
        if self.decision_factors.risk_profile == RiskProfile.CONSERVATIVE:
            return 1.0
        elif self.decision_factors.risk_profile == RiskProfile.BALANCED:
            return 0.5
        else:
            return -0.3

    def evaluate_all_options(self, context: DecisionContext) -> Dict[str, Any]:
        """评估所有选项并返回结果"""
        option_results = []

        for option in context.options:
            score, dimension_scores = self.evaluate_option(option, context)

            result = {
                "option": option.name,
                "expected_value": score,
                "dimension_scores": dimension_scores,
                "recommendation_score": score,
            }
            option_results.append(result)

        # 按分数排序
        option_results.sort(key=lambda x: x["recommendation_score"], reverse=True)

        return {
            "recommendations": option_results[:3],
            "best_choice": option_results[0] if option_results else None,
            "all_results": option_results,
            "analysis": {
                "method": "traditional_weighted_scoring",
                "dimension_leaders": self._get_dimension_leaders(option_results),
            },
            # 添加决策因子信息
            "decision_factors": {
                "weights": self.decision_factors.weights,
                "risk_profile": self.decision_factors.risk_profile.value,
                "evaluation_criteria": self.decision_factors.evaluation_criteria,
            },
        }

    def evaluate_option(self, option: DecisionOption, context: DecisionContext) -> Tuple[float, Dict[str, float]]:
        if option.name in self.pre_evaluations:
            score, dimension_scores = self.pre_evaluations[option.name]
            utility_score = self.utility_func.calculate_utility(score)
            return utility_score, dimension_scores

        return self._simple_evaluate(option, context)

    def _simple_evaluate(self, option: DecisionOption, context: DecisionContext) -> Tuple[float, Dict[str, float]]:
        scores = {}
        total_score = 0

        for attr_name, attr_value in option.attributes.items():
            normalized_score = min(1.0, attr_value / 100.0) if isinstance(attr_value, (int, float)) else 0.5
            scores[attr_name] = normalized_score
            weight = self.decision_factors.weights.get(attr_name, 1.0 / len(option.attributes))
            total_score += weight * normalized_score

        return total_score, scores

    def _get_dimension_leaders(self, option_results: List[Dict]) -> Dict[str, Tuple[str, float]]:
        dimension_leaders = {}
        for result in option_results:
            for dim, score in result.get("dimension_scores", {}).items():
                if dim not in dimension_leaders or score > dimension_leaders[dim][1]:
                    dimension_leaders[dim] = (result["option"], score)
        return dimension_leaders


class BayesianMCTSNode:
    def __init__(
        self,
        state: Dict,
        parent: Optional["BayesianMCTSNode"] = None,
        action: Any = None,
        context: DecisionContext = None,
    ):
        self.state = state
        self.parent = parent
        self.action = action
        self.context = context
        self.children = []
        self.alpha = 1.0
        self.beta = 1.0
        self.visits = 0
        self.value_history = []
        self.dimension_scores = {}
        self.untried_actions = self._get_available_actions()

    def _get_available_actions(self) -> List[str]:
        if self.context and not self.state.get("is_terminal", False):
            return [opt.name for opt in self.context.options]
        return []

    def is_terminal(self) -> bool:
        return self.state.get("is_terminal", False) or self.state.get("depth", 0) >= 1

    def is_fully_expanded(self) -> bool:
        return len(self.untried_actions) == 0

    def ucb_select_child(self, exploration_param: float = 1.414) -> Optional["BayesianMCTSNode"]:
        if not self.children:
            return None

        total_visits = sum(child.visits for child in self.children)
        if total_visits == 0:
            return np.random.choice(self.children)

        ucb_values = []
        for child in self.children:
            if child.visits == 0:
                ucb_values.append(float("inf"))
            else:
                exploitation = child.get_posterior_mean()
                exploration = exploration_param * math.sqrt(math.log(total_visits) / child.visits)
                ucb_values.append(exploitation + exploration)

        return self.children[np.argmax(ucb_values)]

    def thompson_sampling_select(self) -> Optional["BayesianMCTSNode"]:
        if not self.children:
            return None

        samples = [np.random.beta(child.alpha, child.beta) for child in self.children]
        return self.children[np.argmax(samples)]

    def get_posterior_mean(self) -> float:
        return self.alpha / (self.alpha + self.beta)

    def get_posterior_variance(self) -> float:
        alpha, beta = self.alpha, self.beta
        return (alpha * beta) / ((alpha + beta) ** 2 * (alpha + beta + 1))

    def expand(self) -> "BayesianMCTSNode":
        if not self.untried_actions:
            return self

        action = self.untried_actions.pop()
        next_state = self._apply_action(self.state, action)
        child = BayesianMCTSNode(next_state, self, action, self.context)
        self.children.append(child)
        return child

    def _apply_action(self, state: Dict, action: str) -> Dict:
        new_state = state.copy()
        new_state["selected_option"] = action
        new_state["depth"] = state.get("depth", 0) + 1
        new_state["is_terminal"] = True
        return new_state

    def update(self, reward: float, dimension_scores: Dict[str, float] = None):
        self.visits += 1
        self.value_history.append(reward)

        if dimension_scores:
            for dim, score in dimension_scores.items():
                if dim not in self.dimension_scores:
                    self.dimension_scores[dim] = []
                self.dimension_scores[dim].append(score)

        reward = max(0, min(1, reward))
        noise_factor = max(0.01, 1.0 / (self.visits + 1))
        reward += np.random.normal(0, noise_factor)
        reward = max(0, min(1, reward))

        update_rate = 1.0
        self.alpha += reward * update_rate
        self.beta += (1 - reward) * update_rate


class BayesianMCTS:
    def __init__(
        self,
        context: DecisionContext,
        decision_factors: DecisionFactors,
        evaluator: UtilityEvaluator,
        iterations: int = 1000,
        progress_callback=None,
        early_stop_threshold: float = 0.01,
        min_iterations: int = 100,
        selection_method: str = "mixed",
    ):
        self.context = context
        self.decision_factors = decision_factors
        self.evaluator = evaluator
        self.iterations = iterations
        self.progress_callback = progress_callback
        self.early_stop_threshold = early_stop_threshold
        self.min_iterations = min_iterations
        self.selection_method = selection_method

    def search(self) -> Dict[str, Any]:
        initial_state = {"is_terminal": False, "depth": 0}
        root = BayesianMCTSNode(initial_state, context=self.context)

        best_scores_history = []

        for iteration in range(self.iterations):
            if self.progress_callback and (iteration + 1) % 100 == 0:
                progress = (iteration + 1) / self.iterations
                self.progress_callback(progress, f"MCTS搜索进度: {iteration + 1}/{self.iterations}")

            node = self._select(root)

            if not node.is_terminal() and not node.is_fully_expanded():
                node = node.expand()

            reward, dimension_scores = self._simulate(node)
            self._backpropagate(node, reward, dimension_scores)

            if iteration >= self.min_iterations and iteration % 50 == 0:
                if self._should_early_stop(root, best_scores_history):
                    if self.progress_callback:
                        self.progress_callback(1.0, f"MCTS早停触发,在第 {iteration + 1} 次迭代停止")
                    break

        return self._get_results(root)

    def _select(self, node: BayesianMCTSNode) -> BayesianMCTSNode:
        while not node.is_terminal() and node.is_fully_expanded():
            if self.selection_method == "ucb":
                node = node.ucb_select_child()
            elif self.selection_method == "thompson":
                node = node.thompson_sampling_select()
            else:  # mixed
                if np.random.random() < 0.7:
                    node = node.thompson_sampling_select()
                else:
                    node = node.ucb_select_child()

            if node is None:
                break
        return node

    def _simulate(self, node: BayesianMCTSNode) -> Tuple[float, Dict[str, float]]:
        if "selected_option" in node.state:
            option_name = node.state["selected_option"]
            option = next((opt for opt in self.context.options if opt.name == option_name), None)
            if option:
                base_reward, dim_scores = self.evaluator.evaluate_option(option, self.context)
                noise = np.random.normal(0, 0.05)
                reward = max(0, min(1, base_reward + noise))
                return reward, dim_scores

        random_option = np.random.choice(self.context.options)
        base_reward, dim_scores = self.evaluator.evaluate_option(random_option, self.context)
        noise = np.random.normal(0, 0.05)
        reward = max(0, min(1, base_reward + noise))
        return reward, dim_scores

    def _backpropagate(self, node: BayesianMCTSNode, reward: float, dimension_scores: Dict[str, float]):
        while node is not None:
            node.update(reward, dimension_scores)
            node = node.parent

    def _should_early_stop(self, root: BayesianMCTSNode, best_scores_history: List[float]) -> bool:
        if not root.children:
            return False

        current_best_scores = [child.get_posterior_mean() for child in root.children]
        current_best_score = max(current_best_scores)
        best_scores_history.append(current_best_score)

        if len(best_scores_history) < 10:
            return False

        recent_scores = best_scores_history[-10:]
        score_variance = np.var(recent_scores)

        if score_variance < self.early_stop_threshold:
            sorted_scores = sorted(current_best_scores, reverse=True)
            if len(sorted_scores) >= 2:
                score_gap = sorted_scores[0] - sorted_scores[1]
                if score_gap > 0.1:
                    return True

        return False

    def _get_results(self, root: BayesianMCTSNode) -> Dict[str, Any]:
        if not root.children:
            return {
                "recommendations": [],
                "analysis": {"method": "mcts"},
                "decision_context": self.context.description,
            }

        option_results = []

        for child in root.children:
            option_name = child.action
            lower, upper = self._calculate_confidence_interval(child)

            avg_dimension_scores = {}
            for dim, scores in child.dimension_scores.items():
                if scores:
                    avg_dimension_scores[dim] = np.mean(scores)

            uncertainty = child.get_posterior_variance()
            if child.visits > 1:
                uncertainty = max(uncertainty, np.var(child.value_history) / child.visits)

            result = {
                "option": option_name,
                "expected_value": child.get_posterior_mean(),
                "uncertainty": uncertainty,
                "visits": child.visits,
                "confidence_interval": (lower, upper),
                "dimension_scores": avg_dimension_scores,
                "recommendation_score": child.get_posterior_mean() * (1 - 0.3 * uncertainty),
            }
            option_results.append(result)

        option_results.sort(key=lambda x: x["recommendation_score"], reverse=True)

        analysis = self._generate_analysis(option_results)

        return {
            "recommendations": option_results[:3],
            "best_choice": option_results[0] if option_results else None,
            "all_results": option_results,
            "analysis": analysis,
            "decision_context": self.context.description,
            "decision_factors": {
                "weights": self.decision_factors.weights,
                "risk_profile": self.decision_factors.risk_profile.value,
                "evaluation_criteria": self.decision_factors.evaluation_criteria,
            },
        }

    def _calculate_confidence_interval(self, node: BayesianMCTSNode, confidence: float = 0.95) -> Tuple[float, float]:
        if node.visits < 2:
            return (0.0, 1.0)

        values = node.value_history
        if len(values) > 1:
            mean_val = np.mean(values)
            std_val = np.std(values, ddof=1)
            margin = 1.96 * std_val / np.sqrt(len(values))
            return (max(0, mean_val - margin), min(1, mean_val + margin))
        else:
            return (0.0, 1.0)

    def _generate_analysis(self, option_results: List[Dict]) -> Dict[str, Any]:
        if not option_results:
            return {"method": "mcts"}

        dimension_leaders = {}
        for result in option_results:
            for dim, score in result.get("dimension_scores", {}).items():
                if dim not in dimension_leaders or score > dimension_leaders[dim][1]:
                    dimension_leaders[dim] = (result["option"], score)

        best = option_results[0]
        second_best = option_results[1] if len(option_results) > 1 else None

        analysis = {
            "method": "mcts",
            "selection_strategy": self.selection_method,
            "dimension_leaders": dimension_leaders,
            "confidence_in_best": best["expected_value"] - (second_best["expected_value"] if second_best else 0),
            "exploration_statistics": {
                "total_visits": sum(r["visits"] for r in option_results),
                "visit_distribution": {r["option"]: r["visits"] for r in option_results},
            },
            "uncertainty_analysis": {r["option"]: r["uncertainty"] for r in option_results},
        }

        return analysis


class IntelligentDecisionSystem:
    def __init__(self):
        self.llm_extractor = LLMExtractor()
        self.decision_history = []

    def make_decision(self, user_input: str, progress_callback=None, force_mcts: bool = False) -> Dict[str, Any]:
        if progress_callback:
            progress_callback(0.1, "正在分析问题类型和复杂度...")

        problem_analysis = self.llm_extractor.analyze_problem_type(user_input)
        if force_mcts:
            problem_analysis.problem_type = ProblemType.DYNAMIC

        if progress_callback:
            progress_callback(0.2, f"问题类型: {problem_analysis.problem_type.value}, 复杂度: {problem_analysis.complexity_level.value}")

        if progress_callback:
            progress_callback(0.3, "正在分析您的决策需求...")
        context = self.llm_extractor.extract_decision_factors(user_input)
        
        if progress_callback:
            progress_callback(0.4, f"识别到 {len(context.options)} 个决策选项")

        if progress_callback:
            progress_callback(0.5, "正在制定评估策略...")
        decision_factors = self.llm_extractor.extract_evaluation_strategy(context)

        if progress_callback:
            progress_callback(0.6, "正在批量预评估所有选项...")
        pre_evaluations = self.llm_extractor.batch_evaluate_options(context, decision_factors)

        # 根据问题类型选择决策方法
        if problem_analysis.problem_type == ProblemType.STATIC:
            if progress_callback:
                progress_callback(0.8, "使用传统加权评分方法进行决策...")
            evaluator = TraditionalEvaluator(decision_factors, pre_evaluations)
            results = evaluator.evaluate_all_options(context)
            results["problem_analysis"] = problem_analysis
            if progress_callback:
                progress_callback(1.0, "决策分析完成!")
        else:
            if progress_callback:
                progress_callback(0.7, f"使用MCTS方法进行动态决策搜索({problem_analysis.recommended_iterations}次迭代)...")
            evaluator = UtilityEvaluator(decision_factors, pre_evaluations)
            mcts = BayesianMCTS(
                context,
                decision_factors,
                evaluator,
                iterations=problem_analysis.recommended_iterations,
                progress_callback=progress_callback,
                early_stop_threshold=problem_analysis.early_stop_threshold,
                selection_method="mixed",
            )
            results = mcts.search()
            results["problem_analysis"] = problem_analysis

        self._record_decision(context, results)

        return self._format_decision_report(results, context)

    def _record_decision(self, context: DecisionContext, results: Dict[str, Any]):
        if results.get("best_choice"):
            best_choice = results["best_choice"]["option"]
            expected_value = results["best_choice"]["expected_value"]

            decision_record = {
                "context": context,
                "chosen_option": best_choice,
                "expected_value": expected_value,
                "timestamp": time.time(),
            }
            self.decision_history.append(decision_record)

            if len(self.decision_history) > 100:
                self.decision_history.pop(0)

    def _format_decision_report(self, results: Dict[str, Any], context: DecisionContext) -> Dict[str, Any]:
        report = {
            "decision_summary": {
                "context": context.description,
                "objectives": context.objectives,
                "constraints": context.constraints,
            },
            "problem_analysis": results.get("problem_analysis"),
            "recommendations": results.get("recommendations", []),
            "best_choice": results.get("best_choice"),
            "detailed_analysis": results.get("analysis", {}),
            "decision_factors": results.get("decision_factors", {}),
            "confidence_level": self._calculate_confidence_level(results),
        }

        return report

    def _calculate_confidence_level(self, results: Dict[str, Any]) -> str:
        if not results.get("recommendations"):
            return "low"

        best = results["recommendations"][0]

        # 对于传统方法,基于分数差异计算信心
        if results.get("analysis", {}).get("method") == "traditional_weighted_scoring":
            if len(results["recommendations"]) > 1:
                second = results["recommendations"][1]
                gap = best["expected_value"] - second["expected_value"]

                if gap > 0.2:
                    return "very_high"
                elif gap > 0.15:
                    return "high"
                elif gap > 0.1:
                    return "medium"
                else:
                    return "low"
            else:
                return "medium"

        # 对于MCTS方法,基于不确定性计算信心
        uncertainty = best.get("uncertainty", 0.0)

        if len(results["recommendations"]) > 1:
            second = results["recommendations"][1]
            gap = best["expected_value"] - second["expected_value"]

            if gap > 0.2 and uncertainty < 0.05:
                return "very_high"
            elif gap > 0.15 and uncertainty < 0.1:
                return "high"
            elif gap > 0.1 and uncertainty < 0.15:
                return "medium"
            else:
                return "low"
        else:
            if uncertainty < 0.05:
                return "high"
            elif uncertainty < 0.1:
                return "medium"
            else:
                return "low"


def format_decision_report_for_chat(report: Dict[str, Any]) -> str:
    """将决策报告格式化为适合聊天界面显示的文本"""
    output = []
    
    output.append("# 🎯 智能决策分析报告")
    output.append("=" * 60)
    
    # 决策场景
    output.append(f"\n## 📋 决策场景")
    output.append(f"**描述**: {report['decision_summary']['context']}")
    output.append(f"**优化目标**: {', '.join(report['decision_summary']['objectives'])}")
    output.append(f"**约束条件**: {', '.join(report['decision_summary']['constraints'])}")
    
    # 问题分析
    if report.get("problem_analysis"):
        analysis = report["problem_analysis"]
        output.append(f"\n## 🔍 问题分析")
        output.append(f"- **问题类型**: {analysis.problem_type.value}")
        output.append(f"- **复杂度**: {analysis.complexity_level.value}")
        output.append(f"- **分析说明**: {analysis.explanation}")
        if analysis.problem_type == ProblemType.DYNAMIC:
            output.append(f"- **推荐迭代次数**: {analysis.recommended_iterations}")
            output.append(f"- **早停阈值**: {analysis.early_stop_threshold}")
    
    # 决策信心
    confidence_emoji = {
        "very_high": "🟢",
        "high": "🟡", 
        "medium": "🟠",
        "low": "🔴"
    }
    confidence = report['confidence_level']
    output.append(f"\n## 📊 决策信心水平: {confidence_emoji.get(confidence, '⚪')} {confidence.upper()}")
    
    # 推荐方案
    output.append(f"\n## 🏆 推荐方案排序")
    for i, rec in enumerate(report["recommendations"], 1):
        emoji = "🥇" if i == 1 else "🥈" if i == 2 else "🥉"
        output.append(f"\n### {emoji} {i}. {rec['option']}")
        output.append(f"- **综合评分**: {rec['expected_value']:.3f}")
        output.append(f"- **推荐指数**: {rec['recommendation_score']:.3f}")
        
        # MCTS特有信息
        if "confidence_interval" in rec:
            output.append(f"- **置信区间**: [{rec['confidence_interval'][0]:.3f}, {rec['confidence_interval'][1]:.3f}]")
        if "uncertainty" in rec:
            output.append(f"- **不确定性**: {rec['uncertainty']:.4f}")
        if "visits" in rec:
            output.append(f"- **访问次数**: {rec['visits']}")
        
        # 维度得分
        if rec["dimension_scores"]:
            output.append("- **维度得分**:")
            for dim, score in rec["dimension_scores"].items():
                output.append(f"  - {dim}: {score:.3f}")
    
    # 各维度最佳选项
    if report["detailed_analysis"].get("dimension_leaders"):
        output.append(f"\n## 🎖️ 各维度最佳选项")
        for dim, (option, score) in report["detailed_analysis"]["dimension_leaders"].items():
            output.append(f"- **{dim}**: {option} ({score:.3f})")
    
    # 决策因子权重
    decision_factors = report.get("decision_factors", {})
    if decision_factors.get("weights"):
        output.append(f"\n## ⚖️ 决策因子权重")
        for factor, weight in decision_factors["weights"].items():
            output.append(f"- {factor}: {weight:.3f}")
    
    # 其他信息
    risk_profile = decision_factors.get("risk_profile", "未知")
    output.append(f"\n## 📈 风险偏好: {risk_profile}")
    
    analysis_method = report["detailed_analysis"].get("method", "unknown")
    output.append(f"\n## 🔧 决策方法: {analysis_method.upper()}")
    
    if analysis_method == "mcts":
        selection_strategy = report["detailed_analysis"].get("selection_strategy", "mixed")
        output.append(f"- **选择策略**: {selection_strategy}")
        
        if report["detailed_analysis"].get("exploration_statistics"):
            exp_stats = report["detailed_analysis"]["exploration_statistics"]
            output.append(f"- **总访问次数**: {exp_stats['total_visits']}")
            output.append("- **访问分布**:")
            for option, visits in exp_stats["visit_distribution"].items():
                output.append(f"  - {option}: {visits}")
    
    return "\n".join(output)


# Gradio界面
def create_gradio_interface():
    # 初始化决策系统
    decision_system = IntelligentDecisionSystem()
    
    def process_decision(message, history, force_mcts=True):
        """处理用户决策请求"""
        if not message.strip():
            return history + [["请输入您的决策问题", "请描述您需要帮助的决策问题,我将为您提供智能分析和建议。"]]
        
        # 添加用户消息到历史
        history = history + [[message, None]]
        
        try:
            # 创建进度回调函数
            progress_messages = []
            
            def progress_callback(progress, status):
                progress_messages.append(f"⏳ {status}")
                # 更新最后一条消息显示进度
                if history and history[-1][1] is None:
                    history[-1][1] = "\n".join(progress_messages)
                return history
            
            # 执行决策分析
            report = decision_system.make_decision(
                message, 
                progress_callback=progress_callback,
                force_mcts=force_mcts
            )
            
            # 格式化报告
            formatted_report = format_decision_report_for_chat(report)
            
            # 更新最后一条消息
            history[-1][1] = formatted_report
            
        except Exception as e:
            error_msg = f"❌ 分析过程中出现错误: {str(e)}\n\n请检查您的问题描述是否清晰,或稍后重试。"
            history[-1][1] = error_msg
        
        return history
        
    # 创建Gradio界面
    with gr.Blocks(
        title="智能决策助手",
        theme=gr.themes.Soft(),
        css="""
        .chat-message {
            font-size: 14px;
        }
        """
    ) as demo: 
        # 聊天界面
        chatbot = gr.Chatbot(
            label="决策分析对话",
            height=600,
            show_label=True,
            container=True,
            bubble_full_width=False
        )
        
        with gr.Row():
            msg = gr.Textbox(
                label="输入您的决策问题",
                placeholder="请详细描述您的决策场景、可选方案和目标...",
                lines=3,
                max_lines=10,
                show_label=True,
                container=True
            )
        
        with gr.Row():
            submit_btn = gr.Button("🎯 智能分析", variant="primary", size="lg")
            clear_btn = gr.Button("🗑️ 清空对话", variant="stop", size="lg")
        
        # 示例问题
        gr.Markdown("### 📋 示例问题(点击快速填入)")
        
        example_1 = gr.Button("🏫 学校选择问题", size="sm")
        example_2 = gr.Button("🎮 游戏策略问题", size="sm") 
        example_3 = gr.Button("💼 供应商选择问题", size="sm")
        
        # 事件绑定
        def submit_message(message, history):
            return process_decision(message, history), ""
        
        def submit_with_mcts(message, history):
            return process_with_mcts(message, history), ""
        
        def clear_chat():
            return []
        
        # 绑定提交事件
        submit_btn.click(
            submit_message,
            inputs=[msg, chatbot],
            outputs=[chatbot, msg]
        )
    
        
        msg.submit(
            submit_message,
            inputs=[msg, chatbot],
            outputs=[chatbot, msg]
        )
        
        clear_btn.click(
            clear_chat,
            outputs=[chatbot]
        )
        
        # 示例问题填入
        def fill_example_1():
            return """我需要为孩子选择一所小学学校。我们的积分大约是103.75分,如果是报B学校还可以再加 3.5 积分。
可选学校:
1. A学校:教学质量很好(9分),要求105分,有直升机会,无额外加积分,离家比较近
2. B学校:教学质量中等(6分),要求103分,没有直升,可以额外加3.5积分,离家比较近  
3. C学校:教学质量一般(2分),要求90分,没有直升,无额外加积分,离家很远

我们比较看重教学质量,但也要把握录取概率,另外所有学校的积分有小概率在去年基础上加减 1 积分左右。"""
        
        def fill_example_2():
            return """我在玩一个策略游戏,需要选择下一步行动。当前情况:
1. 我有10金币,对手有80金币
2. 我可以选择:攻击(消耗30金币,可能获得50金币),防守(消耗10金币,减少损失),发展经济(消耗40金币,下回合+60金币),投降,平局
3. 对手可能会根据我的选择调整策略
4. 游戏还有3回合结束

我的目标是最终金币数量最多,需要考虑对手的反应。"""
        
        def fill_example_3():
            return """公司需要选择新的原材料供应商,有以下几个选项:

1. 供应商A:价格较高(单价120元),质量优秀(质量分9.2),交货及时率95%,距离较近
2. 供应商B:价格中等(单价100元),质量良好(质量分7.8),交货及时率88%,距离中等
3. 供应商C:价格便宜(单价80元),质量一般(质量分6.5),交货及时率75%,距离较远

我们的预算有限,但对质量和交货时间都有要求。年采购量预计10万件。"""
        
        example_1.click(fill_example_1, outputs=[msg])
        example_2.click(fill_example_2, outputs=[msg])
        example_3.click(fill_example_3, outputs=[msg])
        
        # 使用说明
        with gr.Accordion("📖 详细使用说明", open=False):
            gr.Markdown("""
            ## 🔧 功能说明            
            - **强制使用MCTS**: 无论问题类型,都使用MCTS方法进行深度分析
              - 适合需要考虑更多不确定性的复杂决策
              - 分析时间较长,但结果更全面
            
            ### 📊 报告内容说明
            - **综合评分**: 基于所有因素的加权综合得分
            - **推荐指数**: 考虑不确定性后的最终推荐分数
            - **置信区间**: MCTS方法提供的结果可信度范围
            - **不确定性**: 决策结果的不确定程度
            - **维度得分**: 各个评估维度的详细得分
            
            ### 💡 最佳实践
            1. **详细描述**: 提供尽可能详细的背景信息
            2. **量化信息**: 尽量提供具体的数值和指标
            3. **明确目标**: 清楚说明您的优化目标和约束条件
            4. **多轮对话**: 可以基于分析结果进一步提问和讨论
            """)
    
    return demo


def main():
    """启动Gradio应用"""
    demo = create_gradio_interface()
    
    # 启动应用
    demo.launch(
        server_name="0.0.0.0",  # 允许外部访问
        server_port=7860,       # 端口号
        share=False,            # 是否创建公共链接
        debug=True,             # 调试模式
        show_error=True,        # 显示错误信息
        quiet=False             # 是否静默启动
    )


if __name__ == "__main__":
    main()