File size: 6,139 Bytes
51c49bc
 
7de4ea4
51c49bc
 
2ad0600
51c49bc
2ee994f
 
 
 
2ad0600
51c49bc
2ee994f
 
 
51c49bc
26f855a
 
 
 
2ad0600
26f855a
 
 
 
2ad0600
 
26f855a
 
 
 
 
51c49bc
26f855a
 
2ad0600
26f855a
51c49bc
2795ce6
 
 
 
 
 
51c49bc
2795ce6
26f855a
2795ce6
2ad0600
 
 
26f855a
 
 
 
2ad0600
 
 
51c49bc
2ad0600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26f855a
2ad0600
 
51c49bc
2ad0600
 
 
 
 
 
 
 
 
 
 
 
 
51c49bc
 
26f855a
2795ce6
26f855a
2795ce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26f855a
2795ce6
 
 
 
8dd6f8c
2795ce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51c49bc
26f855a
2ad0600
26f855a
51c49bc
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import numpy as np
import cv2
# import matplotlib.pyplot as plt
import sys
import os
import logging

logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Global variables
cordinates = []

def remove_shadow(image):
    try:
        rgb_planes = cv2.split(image)
        result_planes = []
        result_norm_planes = []
        
        for plane in rgb_planes:
            dilated_img = cv2.dilate(plane, np.ones((7,7), np.uint8))
            bg_img = cv2.medianBlur(dilated_img, 21)
            diff_img = 255 - cv2.absdiff(plane, bg_img)
            norm_img = cv2.normalize(diff_img, None, alpha=0, beta=255, 
                                  norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8UC1)
            result_planes.append(diff_img)
            result_norm_planes.append(norm_img)
            
        result = cv2.merge(result_planes)
        result_norm = cv2.merge(result_norm_planes)
        
        return result, result_norm
    except Exception as e:
        logger.error(f"Error in remove_shadow: {str(e)}")
        return image, image

x_scaling = 0
y_scaling = 0
binary_image1 = 0
line = 0 
line_length = 0
count = 0
    
def analise(image):
    try:
        global line, binary_image1, x_scaling, y_scaling
        line = []
        kernel = np.ones((1,250), np.uint8)
        dilation = cv2.dilate(image, kernel, iterations=2)
        
        contours, _ = cv2.findContours(dilation, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

        for i in reversed(contours):
            x, y, w, h = cv2.boundingRect(i)
            if cv2.contourArea(i) < 20 or h < 8:
                continue
                
            scaling_factor_in_y = 0.5
            scaling_factor_in_x = 0
            resized_contour = i.copy()
            
            resized_contour = i * [x_scaling, y_scaling] 
            resized_contour = resized_contour.astype(int)      
            final_image__ = np.zeros_like(binary_image1)
            cv2.drawContours(final_image__, [resized_contour], 0, (255), -1)
                        
            kernel_dil = np.ones((3,3), np.uint8)
            final_image__ = cv2.dilate(final_image__, kernel_dil, iterations=3)
                        
            line_image_final = cv2.bitwise_and(final_image__, binary_image1)
            line.append(line_image_final)
            
    except Exception as e:
        logger.error(f"Error in analise: {str(e)}")
        return []

def image_resize_and_erosion(image):
    try:
        height, width = image.shape[:2]
        height = height + 1 * height
        height = int(height)
        
        resized_image = cv2.resize(image, (width, height))
        kernel = np.ones((13,1), np.uint8)   
        erosion = cv2.erode(resized_image, kernel, iterations=1)
        return erosion
    except Exception as e:
        logger.error(f"Error in image_resize_and_erosion: {str(e)}")
        return image

def convert_image(img):
    try:
        global x_scaling, y_scaling, binary_image1, line, line_length, count
        img_copy = np.copy(img)
        line_length = 250
        rect_image = img

        # Remove shadow and convert to grayscale
        image1, image2_ = remove_shadow(rect_image)
        gray_ = cv2.cvtColor(image2_, cv2.COLOR_BGR2GRAY)
        
        # Convert to binary
        _, binary_image_ = cv2.threshold(gray_, 200, 255, cv2.THRESH_BINARY)
        inverted_binary_image_ = 255 - binary_image_
        binary_image1 = np.copy(inverted_binary_image_)

        # Get image dimensions and calculate scaling
        y_height, x_width = rect_image.shape[:2]
        new_width = 500 * 5
        new_height = 705 * 5
        x_scaling = x_width / new_width
        y_scaling = y_height / new_height

        # Resize image
        rect_image = cv2.resize(rect_image, (new_width, new_height), interpolation=cv2.INTER_NEAREST)
        
        # Process resized image
        image1, image2 = remove_shadow(rect_image)
        gray = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY)
        _, binary_image = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY)
        inverted_binary_image = 255 - binary_image

        # Noise removal and enhancement
        kernel = np.ones((2,2), np.uint8)
        erosion = cv2.erode(inverted_binary_image, kernel, iterations=1)
        dilation = cv2.dilate(erosion, kernel, iterations=1)
        new_image = np.copy(dilation)
        new_image = 255 - new_image

        # Line separation
        kernel = np.ones((1,250), np.uint8)
        dilation_1 = cv2.dilate(dilation, kernel, iterations=2)
        contours, _ = cv2.findContours(dilation_1, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        
        line = []
        for i in reversed(contours):
            x, y, w, h = cv2.boundingRect(i)
            if cv2.contourArea(i) < 20 or h < 10:
                continue
            cv2.drawContours(new_image, [i], -1, (0), 2)
            final_image_ = np.zeros_like(binary_image)
            cv2.drawContours(final_image_, [i], 0, (255), -1)
            line_image = cv2.bitwise_and(final_image_, dilation)
            analise(line_image)

        # Process words
        count = 0
        kernel1 = np.ones((8,8), np.uint8)
        word__image = []
        
        for line_image in line:
            dilation_2 = cv2.dilate(line_image, kernel1, iterations=2)
            contours1, _ = cv2.findContours(dilation_2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
            sorted_contours = sorted(contours1, key=lambda c: cv2.boundingRect(c)[0])
            
            for j in sorted_contours:
                x1, y1, w1, h1 = cv2.boundingRect(j)
                final_image = line_image[y1:y1+h1, x1:x1+w1]
                final_image = 255 - final_image
                word__image.append(final_image)
                count += 1

        logger.info(f"Successfully processed {count} word images")
        return word__image
        
    except Exception as e:
        logger.error(f"Error in convert_image: {str(e)}")
        return []

    


# img = cv2.imread("ans_image/1.jpg")
# convert_image(img)