yamanavijayavardhan's picture
printing extracted text23
4943e51
import os
import tempfile
import gc
import psutil
import time
import logging
import queue
import torch
from all_models import ModelSingleton
# Set up logging first
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)
# Create notification queue for real-time updates
notification_queue = queue.Queue()
def log_print(message, level="INFO"):
"""Unified logging function"""
if level == "ERROR":
logger.error(message)
elif level == "WARNING":
logger.warning(message)
else:
logger.info(message)
# Also put the message in notification queue for frontend
notification_queue.put({
"type": level.lower(),
"message": message
})
def get_user_cache_dir():
"""Get a user-accessible cache directory"""
try:
# Try user's home directory first
user_cache = os.path.join(os.path.expanduser('~'), '.cache', 'answer_grading_app')
if not os.path.exists(user_cache):
os.makedirs(user_cache, mode=0o755, exist_ok=True)
return user_cache
except Exception as e:
log_print(f"Error creating user cache directory: {e}", "WARNING")
# Fallback to temp directory
temp_dir = os.path.join(tempfile.gettempdir(), 'answer_grading_app')
os.makedirs(temp_dir, mode=0o755, exist_ok=True)
return temp_dir
# Set up base directories
BASE_DIR = get_user_cache_dir()
log_print(f"Using base directory: {BASE_DIR}")
# Get absolute path to project root for models
PROJECT_ROOT = os.path.dirname(os.path.abspath(__file__))
os.environ['MODEL_ROOT'] = PROJECT_ROOT
log_print(f"Set MODEL_ROOT to: {PROJECT_ROOT}")
# Set environment variables before any other imports
cache_dirs = {
'root': BASE_DIR,
'transformers': os.path.join(BASE_DIR, 'transformers'),
'hf': os.path.join(BASE_DIR, 'huggingface'),
'torch': os.path.join(BASE_DIR, 'torch'),
'cache': os.path.join(BASE_DIR, 'cache'),
'sentence_transformers': os.path.join(BASE_DIR, 'sentence_transformers'),
'gensim': os.path.join(BASE_DIR, 'gensim'),
'nltk': os.path.join(BASE_DIR, 'nltk_data'),
'logs': os.path.join(BASE_DIR, 'logs'),
'uploads': os.path.join(BASE_DIR, 'uploads'),
'images': os.path.join(BASE_DIR, 'images'),
'ans_image': os.path.join(BASE_DIR, 'ans_image'),
'models': os.path.join(PROJECT_ROOT, 'models') # Add models directory
}
# Create all necessary directories with proper permissions
for name, path in cache_dirs.items():
try:
os.makedirs(path, mode=0o755, exist_ok=True)
log_print(f"Created directory: {path}")
except Exception as e:
log_print(f"Error creating directory {name}: {e}", "ERROR")
# Set environment variables
os.environ['TRANSFORMERS_CACHE'] = cache_dirs['transformers']
os.environ['HF_HOME'] = cache_dirs['hf']
os.environ['TORCH_HOME'] = cache_dirs['torch']
os.environ['XDG_CACHE_HOME'] = cache_dirs['cache']
os.environ['SENTENCE_TRANSFORMERS_HOME'] = cache_dirs['sentence_transformers']
os.environ['GENSIM_DATA_DIR'] = cache_dirs['gensim']
os.environ['NLTK_DATA'] = cache_dirs['nltk']
# Now import the rest of the dependencies
import sys
from pathlib import Path
from flask import Flask, request, jsonify, render_template, send_file, Response
from werkzeug.utils import secure_filename
import cv2
import numpy as np
from PIL import Image
import io
import base64
from datetime import datetime
import json
import threading
from threading import Thread, Event
import warnings
from flask_cors import CORS
from dotenv import load_dotenv
warnings.filterwarnings('ignore')
# Import ML libraries
import nltk
import gensim
from gensim.models import FastText
from sentence_transformers import SentenceTransformer
from transformers import pipeline
# Import ML libraries with timeout protection
def import_with_timeout(import_statement, timeout=30):
"""Import a module with a timeout to prevent hanging"""
result = {'success': False, 'module': None, 'error': None}
def _import():
try:
if isinstance(import_statement, str):
result['module'] = __import__(import_statement)
else:
exec(import_statement)
result['success'] = True
except Exception as e:
result['error'] = str(e)
thread = Thread(target=_import)
thread.daemon = True
thread.start()
thread.join(timeout=timeout)
if thread.is_alive():
return None, f"Import timed out after {timeout} seconds"
return result['module'], result['error']
# Import ML libraries safely
nltk, nltk_error = import_with_timeout('nltk')
if nltk_error:
log_print(f"Warning: NLTK import failed: {nltk_error}", "WARNING")
gensim, gensim_error = import_with_timeout('gensim')
if gensim_error:
log_print(f"Warning: Gensim import failed: {gensim_error}", "WARNING")
torch, torch_error = import_with_timeout('torch')
if torch_error:
log_print(f"Warning: PyTorch import failed: {torch_error}", "WARNING")
# Add the project root directory to Python path
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
# Global variables for model caching and initialization status
global_models = {}
initialization_complete = Event()
# Initialize model singleton
models = ModelSingleton()
def ensure_full_permissions(path):
"""Grant full permissions to a file or directory"""
try:
if os.path.isdir(path):
# Full permissions for directories (rwxrwxrwx)
os.chmod(path, 0o777)
# Apply to all contents recursively
for root, dirs, files in os.walk(path):
for d in dirs:
os.chmod(os.path.join(root, d), 0o777)
for f in files:
os.chmod(os.path.join(root, f), 0o666)
else:
# Full permissions for files (rw-rw-rw-)
os.chmod(path, 0o666)
return True
except Exception as e:
log_print(f"Error setting permissions for {path}: {e}", "ERROR")
return False
def ensure_directory(path):
"""Create directory and ensure full permissions"""
try:
if os.path.exists(path):
ensure_full_permissions(path)
return path
# Create directory with full permissions
os.makedirs(path, mode=0o777, exist_ok=True)
ensure_full_permissions(path)
return path
except Exception as e:
log_print(f"Error creating directory {path}: {e}", "ERROR")
raise
def get_or_load_model(model_name):
"""Get a model from cache or load it if not present"""
if model_name not in global_models:
try:
if model_name == 'fasttext':
from gensim.models import KeyedVectors
log_print(f"Loading {model_name} model...")
model_path = os.path.join(cache_dirs['gensim'], 'fasttext-wiki-news-subwords-300', 'fasttext-wiki-news-subwords-300.gz')
model_dir = os.path.dirname(model_path)
try:
# Create model directory if it doesn't exist
os.makedirs(model_dir, exist_ok=True)
if os.path.exists(model_path):
log_print("Loading fasttext model from cache...")
model = KeyedVectors.load_word2vec_format(model_path)
else:
# Only download if file doesn't exist
from gensim.downloader import load
log_print("Downloading fasttext model...")
model = load('fasttext-wiki-news-subwords-300')
# FastText model doesn't need to be moved to any device
global_models[model_name] = model
log_print(f"Successfully loaded {model_name} model")
except Exception as e:
log_print(f"Error loading fasttext model: {str(e)}", "ERROR")
return None
elif model_name == 'vit':
try:
from transformers import ViTImageProcessor, ViTModel, ViTConfig
log_print("Loading local ViT model...")
# Use the correct model path for vit-base-beans
model_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models', 'vit-base-beans')
if not os.path.exists(model_path):
log_print(f"Error: Local ViT model not found at {model_path}", "ERROR")
return None
try:
# Create default image processor since preprocessor_config.json is missing
log_print("Creating default image processor...")
processor = ViTImageProcessor(
do_resize=True,
size=224, # Default size for ViT
do_normalize=True,
image_mean=[0.5, 0.5, 0.5], # Default normalization
image_std=[0.5, 0.5, 0.5]
)
# Check for safetensors file explicitly
model_file = os.path.join(model_path, 'model.safetensors')
config_file = os.path.join(model_path, 'config.json')
if not os.path.exists(model_file):
raise FileNotFoundError(f"Model file not found: {model_file}")
if not os.path.exists(config_file):
raise FileNotFoundError(f"Config file not found: {config_file}")
log_print(f"Found model files:")
log_print(f"- Model weights: {model_file}")
log_print(f"- Config file: {config_file}")
# Load the local model with explicit safetensors support
log_print("Loading ViT model from safetensors file...")
from transformers import ViTForImageClassification
model = ViTForImageClassification.from_pretrained(
model_path,
local_files_only=True,
use_safetensors=True, # Explicitly use safetensors format
trust_remote_code=False, # Don't execute any remote code
ignore_mismatched_sizes=True # Handle any size mismatches
)
# Move model to CPU explicitly
model = model.to('cpu')
global_models['vit_processor'] = processor
global_models['vit_model'] = model
log_print("Successfully loaded local ViT model and created image processor")
except Exception as e:
log_print(f"Error loading local ViT model: {str(e)}", "ERROR")
return None
except Exception as e:
log_print(f"Error initializing ViT components: {str(e)}", "ERROR")
return None
elif model_name == 'llm':
log_print("LLM model loading not implemented", "WARNING")
return None
except Exception as e:
log_print(f"Error loading {model_name} model: {str(e)}", "ERROR")
return None
return global_models.get(model_name)
def initialize_resources():
"""Initialize all required resources"""
try:
# Create essential directories first
for directory in [cache_dirs['nltk']]:
ensure_directory(directory)
# Initialize NLTK
required_nltk_data = ['stopwords', 'punkt', 'wordnet']
for data in required_nltk_data:
try:
nltk.data.find(os.path.join('tokenizers', data))
except LookupError:
try:
log_print(f"Downloading NLTK data: {data}")
nltk.download(data, download_dir=cache_dirs['nltk'], quiet=True)
except Exception as e:
log_print(f"Error downloading NLTK data {data}: {e}", "WARNING")
continue
# Initialize models
try:
# Load FastText first
get_or_load_model('fasttext')
# Then load ViT model
get_or_load_model('vit')
except Exception as e:
log_print(f"Warning: Could not preload models: {e}", "WARNING")
except Exception as e:
log_print(f"Error during initialization: {e}", "ERROR")
finally:
# Signal that initialization is complete
initialization_complete.set()
# Create essential directories
essential_dirs = [cache_dirs['root'], cache_dirs['uploads'], cache_dirs['images']]
for directory in essential_dirs:
ensure_directory(directory)
# Set environment variables with full permissions
os.environ['HF_HOME'] = cache_dirs['hf']
os.environ['GENSIM_DATA_DIR'] = cache_dirs['gensim']
# Add the custom directory to NLTK's search path
nltk.data.path.insert(0, cache_dirs['nltk'])
# Ensure all cache directories have full permissions
for cache_dir in cache_dirs.values():
ensure_full_permissions(cache_dir)
# Start initialization in background
initialization_thread = Thread(target=initialize_resources, daemon=True)
initialization_thread.start()
from flask import Flask, request, jsonify, render_template
from HTR.app import extract_text_from_image
from correct_answer_generation.answer_generation_database_creation import database_creation, answer_generation
from similarity_check.tf_idf.tf_idf_score import create_tfidf_values, tfidf_answer_score
from similarity_check.semantic_meaning_check.semantic import similarity_model_score, fasttext_similarity, question_vector_sentence, question_vector_word
from similarity_check.llm_based_scoring.llm import llm_score
app = Flask(__name__)
app.config['JSON_SORT_KEYS'] = False
app.config['JSONIFY_PRETTYPRINT_REGULAR'] = False
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max file size
# Create temporary directories for Hugging Face Spaces
UPLOAD_FOLDER = tempfile.mkdtemp()
ANS_IMAGE_FOLDER = tempfile.mkdtemp()
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
os.makedirs(ANS_IMAGE_FOLDER, exist_ok=True)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
app.config['ANS_IMAGE_FOLDER'] = ANS_IMAGE_FOLDER
# Configure CORS for all origins
CORS(app, resources={
r"/*": {
"origins": "*",
"methods": ["GET", "POST", "OPTIONS"],
"allow_headers": ["Content-Type", "Authorization", "Accept"],
"expose_headers": ["Content-Type"]
}
})
# Global error handler for all exceptions
@app.errorhandler(Exception)
def handle_exception(e):
# Log the error for debugging
app.logger.error(f"Unhandled exception: {str(e)}")
error_details = {
"status": "error",
"error": "Internal server error",
"message": str(e),
"type": type(e).__name__,
"timestamp": datetime.now().isoformat()
}
notification_queue.put({
"type": "error",
"message": error_details
})
return jsonify(error_details), 500
# Handle 404 errors
@app.errorhandler(404)
def not_found_error(error):
return jsonify({
"status": "error",
"error": "Not found",
"message": "The requested resource was not found"
}), 404
# Handle 400 Bad Request
@app.errorhandler(400)
def bad_request_error(error):
return jsonify({
"status": "error",
"error": "Bad request",
"message": str(error)
}), 400
@app.route('/')
def index():
return render_template('2.html')
def new_value(value, old_min, old_max, new_min, new_max):
"""Calculate new value with proper error handling"""
try:
if old_max == old_min:
return new_min # Return minimum value if range is zero
return new_min + ((value - old_min) * (new_max - new_min)) / (old_max - old_min)
except Exception as e:
log_print(f"Error in new_value calculation: {e}", "ERROR")
return new_min # Return minimum value on error
@app.route('/compute_answers', methods=['POST'])
def compute_answers():
try:
file_type = request.form.get('file_type')
log_print(f"Processing file type: {file_type}")
if file_type != "csv":
return jsonify({"error": "Only CSV file processing is supported"}), 400
ans_csv_file = request.files.get('ans_csv_file')
if not ans_csv_file:
return jsonify({"error": "Missing answer CSV file"}), 400
try:
# Read CSV content directly
content = ans_csv_file.read().decode('utf-8')
if not content.strip():
return jsonify({"error": "CSV file is empty"}), 400
# Process answers efficiently
c_answers = []
for line in content.splitlines():
if line.strip():
answers = [ans.strip() for ans in line.split('\\n') if ans.strip()]
if answers: # Only add if there are valid answers
c_answers.append(answers)
if not c_answers:
return jsonify({"error": "No valid answers found in CSV file"}), 400
log_print(f"Successfully processed {len(c_answers)} answers from CSV")
return jsonify({"answers": c_answers}), 200
except Exception as e:
log_print(f"Error processing CSV file: {str(e)}", "ERROR")
return jsonify({"error": f"Error processing CSV file: {str(e)}"}), 400
except Exception as e:
error_msg = f"Error in compute_answers: {str(e)}"
log_print(error_msg, "ERROR")
return jsonify({"error": error_msg}), 500
def validate_folder_structure(files):
"""Validate the folder structure of uploaded files"""
try:
# Get unique student folders
student_folders = set()
for file in files:
if not file or not file.filename:
continue
path_parts = file.filename.split('/')
if len(path_parts) >= 2:
student_folders.add(path_parts[-2])
if not student_folders:
return False, "No valid student folders found. Please create folders with student names."
# Check if each student folder has the same number of files
file_counts = {}
for file in files:
if not file or not file.filename:
continue
path_parts = file.filename.split('/')
if len(path_parts) >= 2:
student = path_parts[-2]
file_counts[student] = file_counts.get(student, 0) + 1
if not file_counts:
return False, "No valid files found in student folders. Please add image files."
# Check if all students have the same number of files
counts = list(file_counts.values())
if len(set(counts)) > 1:
return False, "Inconsistent number of files across student folders. Each student must have the same number of images."
# Validate file extensions
for file in files:
if not file or not file.filename:
continue
path_parts = file.filename.split('/')
if len(path_parts) >= 2:
filename = path_parts[-1]
ext = os.path.splitext(filename)[1].lower()
if ext not in ['.jpg', '.jpeg', '.png']:
return False, f"Invalid file extension: {ext}. Only .jpg, .jpeg, and .png files are allowed."
return True, f"Valid folder structure with {len(student_folders)} students and {counts[0]} files each"
except Exception as e:
return False, f"Error validating folder structure: {str(e)}"
@app.route('/notifications')
def notifications():
def generate():
error_count = 0
max_errors = 3
while True:
try:
# Get notification from queue (non-blocking)
try:
notification = notification_queue.get_nowait()
if notification:
yield "data: " + json.dumps(notification) + "\n\n"
error_count = 0 # Reset error count on successful notification
except queue.Empty:
# If no notification, yield empty to keep connection alive
yield "data: " + json.dumps({"type": "ping"}) + "\n\n"
time.sleep(0.5) # Keep the connection alive
except Exception as e:
error_count += 1
error_msg = str(e).encode('ascii', 'ignore').decode('ascii')
log_print(f"Error in notification stream: {error_msg}", "ERROR")
yield "data: " + json.dumps({
"type": "error",
"message": f"Server error: {error_msg}"
}) + "\n\n"
if error_count >= max_errors:
break
return Response(generate(), mimetype='text/event-stream')
def get_memory_usage():
"""Get current memory usage"""
process = psutil.Process(os.getpid())
return process.memory_info().rss / 1024 / 1024 # Convert to MB
def cleanup_memory():
"""Clean up memory by clearing caches and garbage collection"""
try:
# Clear PyTorch cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Clear Python garbage collection
gc.collect()
# Clean up models
if models:
models.cleanup()
# Log memory usage
memory_usage = get_memory_usage()
log_print(f"Memory usage after cleanup: {memory_usage:.2f} MB")
except Exception as e:
log_print(f"Error during memory cleanup: {e}", "ERROR")
@app.route('/compute_marks', methods=['POST'])
def compute_marks():
"""Compute marks for submitted answers"""
try:
# Get answers from request
a = request.form.get('answers')
if not a:
error_msg = "Missing answers in the request"
log_print(error_msg, "ERROR")
return jsonify({"error": error_msg}), 400
try:
answers = json.loads(a)
# Validate answers format
if not isinstance(answers, list):
raise ValueError("Answers must be a list")
if not all(isinstance(ans, list) for ans in answers):
raise ValueError("Each answer must be a list of strings")
if not all(isinstance(text, str) for ans in answers for text in ans):
raise ValueError("All answer texts must be strings")
log_print(f"Received {len(answers)} sets of answers")
log_print(f"Answer format: {[len(ans) for ans in answers]} answers per set")
except json.JSONDecodeError as e:
error_msg = f"Invalid JSON format for answers: {str(e)}"
log_print(error_msg, "ERROR")
return jsonify({"error": error_msg}), 400
except ValueError as e:
error_msg = f"Invalid answer format: {str(e)}"
log_print(error_msg, "ERROR")
return jsonify({"error": error_msg}), 400
# Process uploaded files
files = request.files.getlist('file')
if not files:
error_msg = "No files uploaded. Please upload student folders containing images."
log_print(error_msg, "ERROR")
return jsonify({"error": error_msg}), 400
# Validate folder structure and file count
is_valid, message = validate_folder_structure(files)
if not is_valid:
log_print(message, "ERROR")
return jsonify({"error": message}), 400
# Create student folders structure
data = {}
parent_folder = app.config['ANS_IMAGE_FOLDER']
# Create student folders and save files
for file in files:
if file.filename.endswith(('.jpg', '.jpeg', '.png')):
# Extract student folder from filename
path_parts = file.filename.split('/')
if len(path_parts) >= 2:
student_folder = secure_filename(path_parts[-2])
student_path = os.path.join(parent_folder, student_folder)
os.makedirs(student_path, exist_ok=True)
# Save the file
filename = secure_filename(path_parts[-1])
filepath = os.path.join(student_path, filename)
file.save(filepath)
if student_folder in data:
data[student_folder].append((filename, filepath))
else:
data[student_folder] = [(filename, filepath)]
log_print(f"Processed files structure: {data}")
# Validate that each student has the correct number of files
expected_files = len(answers)
for student, files in data.items():
if len(files) != expected_files:
error_msg = f"Student {student} has {len(files)} files but {expected_files} answers were provided"
log_print(error_msg, "ERROR")
return jsonify({"error": error_msg}), 400
# Calculate marks
results = []
sen_vec_answers = []
word_vec_answers = []
# Process correct answers
for i in answers:
temp_v = []
temp_w = []
for j in i:
temp_v.append(question_vector_sentence(j))
temp_w.append(question_vector_word(j))
sen_vec_answers.append(temp_v)
word_vec_answers.append(temp_w)
# Calculate marks for each student
for student in data:
# Sort the image paths by filename
sorted_images = sorted(data[student], key=lambda x: x[0])
count = 0
for filename, image_path in sorted_images:
try:
# Extract text from image
s_answer = extract_text_from_image(image_path)
log_print(f"Processing student: {student}, image: {filename}")
log_print(f"Extracted text: {s_answer}")
# Handle case where text extraction fails
if s_answer is None or s_answer.strip() == '':
log_print(f"No text extracted from {image_path}", "WARNING")
results.append({
"subfolder": student,
"image": filename,
"marks": 0,
"extracted_text": "",
"correct_answer": answers[count],
"error": "No text could be extracted from image. Please check image quality."
})
count += 1
continue
# Calculate TF-IDF scores
tf_idf_word_values, max_tfidf = create_tfidf_values(answers[count])
log_print(f"TF-IDF max value: {max_tfidf}")
# Calculate marks
m = marks(s_answer, sen_vec_answers[count], word_vec_answers[count],
tf_idf_word_values, max_tfidf, answers[count])
if isinstance(m, torch.Tensor):
m = m.item()
# Add result with extracted text
results.append({
"subfolder": student,
"image": filename,
"marks": round(m, 2),
"extracted_text": s_answer,
"correct_answer": answers[count]
})
count += 1
# Clean up memory after each student
cleanup_memory()
except Exception as e:
log_print(f"Error processing {image_path}: {str(e)}", "ERROR")
results.append({
"subfolder": student,
"image": filename,
"marks": 0,
"extracted_text": "",
"correct_answer": answers[count] if count < len(answers) else [],
"error": f"Error processing image: {str(e)}"
})
count += 1
continue
log_print(f"Calculated results: {results}")
# Clean up temporary files
try:
shutil.rmtree(parent_folder)
except Exception as e:
log_print(f"Could not clean up temporary files: {e}", "WARNING")
# Final memory cleanup
cleanup_memory()
return jsonify({
"results": results,
"debug_info": {
"total_students": len(data),
"total_answers": len(answers),
"answers_processed": count,
"successful_extractions": len([r for r in results if r.get('extracted_text')])
}
}), 200
except Exception as e:
error_msg = str(e)
log_print(f"Error in compute_marks: {error_msg}", "ERROR")
return jsonify({"error": error_msg}), 500
finally:
# Ensure memory is cleaned up even if there's an error
cleanup_memory()
def marks(answer, sen_vec_answers, word_vec_answers, tf_idf_word_values, max_tfidf, correct_answers):
try:
marks = 0
log_print(f"Starting marks calculation for answer: {answer}")
log_print(f"Correct answers: {correct_answers}")
# Calculate TF-IDF score
marks1 = tfidf_answer_score(answer, tf_idf_word_values, max_tfidf, marks=10)
log_print(f"Initial TF-IDF score: {marks1}")
if marks1 > 3:
tfidf_contribution = new_value(marks1, old_min=3, old_max=10, new_min=0, new_max=5)
marks += tfidf_contribution
log_print(f"TF-IDF contribution (>3): {tfidf_contribution}")
if marks1 > 2:
# Calculate sentence transformer score
marks2 = similarity_model_score(sen_vec_answers, answer)
log_print(f"Sentence transformer raw score: {marks2}")
a = 0
if marks2 > 0.95:
marks += 3
a = 3
log_print("High sentence similarity (>0.95): +3 marks")
elif marks2 > 0.5:
sentence_contribution = new_value(marks2, old_min=0.5, old_max=0.95, new_min=0, new_max=3)
marks += sentence_contribution
a = sentence_contribution
log_print(f"Medium sentence similarity (>0.5): +{sentence_contribution} marks")
# Calculate FastText similarity
marks3 = fasttext_similarity(word_vec_answers, answer)
log_print(f"FastText similarity raw score: {marks3}")
b = 0
if marks2 > 0.9:
marks += 2
b = 2
log_print("High word similarity (>0.9): +2 marks")
elif marks3 > 0.4:
word_contribution = new_value(marks3, old_min=0.4, old_max=0.9, new_min=0, new_max=2)
marks += word_contribution
b = word_contribution
log_print(f"Medium word similarity (>0.4): +{word_contribution} marks")
# Calculate LLM score
marks4 = llm_score(correct_answers, answer)
log_print(f"Raw LLM scores: {marks4}")
for i in range(len(marks4)):
marks4[i] = float(marks4[i])
m = max(marks4)
log_print(f"Max LLM score: {m}")
# Final score calculation
final_score = marks/2 + m/2
log_print(f"Final score calculation: (marks={marks}/2 + llm={m}/2) = {final_score}")
marks = final_score
log_print(f"Final marks awarded: {marks}")
return marks
except Exception as e:
log_print(f"Error in marks calculation: {str(e)}", "ERROR")
return 0
@app.route('/check_logs')
def check_logs():
try:
# Ensure log directory exists
ensure_directory(cache_dirs['logs'])
# If log file doesn't exist, create it
log_file = os.path.join(cache_dirs['logs'], 'app.log')
if not os.path.exists(log_file):
with open(log_file, 'w') as f:
f.write("Log file created.\n")
# Read last 1000 lines of logs
with open(log_file, 'r') as f:
logs = f.readlines()[-1000:]
return jsonify({
"status": "success",
"logs": "".join(logs)
})
except Exception as e:
log_print(f"Error reading logs: {str(e)}", "ERROR")
return jsonify({
"status": "error",
"error": str(e)
}), 500
def is_valid_image_file(filename):
"""Validate image file extensions and basic format"""
try:
# Check file extension
valid_extensions = {'.jpg', '.jpeg', '.png'}
ext = os.path.splitext(filename)[1].lower()
if ext not in valid_extensions:
return False
return True
except Exception:
return False
def allowed_file(filename, allowed_extensions):
return '.' in filename and \
filename.rsplit('.', 1)[1].lower() in allowed_extensions
def wait_for_initialization():
"""Wait for initialization to complete"""
initialization_complete.wait()
return True
@app.before_request
def ensure_initialization():
"""Ensure all resources are initialized before processing requests"""
if request.endpoint == 'compute_marks':
wait_for_initialization()
elif request.endpoint == 'compute_answers':
# Only wait for initialization if processing PDF files
if request.method == 'POST' and request.form.get('file_type') == 'pdf':
wait_for_initialization()
def cleanup_temp_files():
"""Clean up temporary files with proper error handling"""
try:
# Clean up the temporary processing directory
temp_processing_dir = os.path.join(BASE_DIR, 'temp_processing')
if os.path.exists(temp_processing_dir):
shutil.rmtree(temp_processing_dir, ignore_errors=True)
# Clean up the images directory
if os.path.exists(cache_dirs['images']):
for file in os.listdir(cache_dirs['images']):
try:
file_path = os.path.join(cache_dirs['images'], file)
if os.path.isfile(file_path):
os.unlink(file_path)
except Exception as e:
log_print(f"Warning: Could not delete file {file_path}: {e}", "WARNING")
# Clean up the upload folder
if os.path.exists(UPLOAD_FOLDER):
try:
shutil.rmtree(UPLOAD_FOLDER, ignore_errors=True)
except Exception as e:
log_print(f"Warning: Could not clean up upload folder: {e}", "WARNING")
except Exception as e:
log_print(f"Error cleaning up temporary files: {e}", "ERROR")
@app.before_first_request
def setup_temp_directories():
"""Set up temporary directories before first request"""
try:
# Create temporary directories with proper permissions
global UPLOAD_FOLDER, ANS_IMAGE_FOLDER
UPLOAD_FOLDER = tempfile.mkdtemp()
ANS_IMAGE_FOLDER = tempfile.mkdtemp()
# Ensure directories have proper permissions
ensure_directory(UPLOAD_FOLDER)
ensure_directory(ANS_IMAGE_FOLDER)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
app.config['ANS_IMAGE_FOLDER'] = ANS_IMAGE_FOLDER
log_print(f"Created temporary directories: {UPLOAD_FOLDER}, {ANS_IMAGE_FOLDER}")
except Exception as e:
log_print(f"Error setting up temporary directories: {e}", "ERROR")
raise
if __name__ == '__main__':
try:
# Create essential directories
for directory in essential_dirs:
ensure_directory(directory)
# Configure server
app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 0
# Start the Flask app
port = int(os.environ.get('PORT', 7860))
log_print(f"Starting server on port {port}")
log_print("Server configuration:")
log_print(f"- Threaded: True")
log_print(f"- Debug mode: False")
# Run the server with proper configuration
app.run(
host='0.0.0.0',
port=port,
debug=False,
use_reloader=False,
threaded=True
)
except Exception as e:
log_print(f"Fatal error starting server: {str(e)}", "ERROR")
raise
finally:
log_print("Cleaning up temporary files...")
cleanup_temp_files()
log_print("Server shutdown complete")