Commit
·
6139662
1
Parent(s):
3885e21
printing extracted text18
Browse files- HTR/hcr.py +7 -29
- HTR/strike.py +11 -74
- all_models.py +148 -6
- main.py +17 -7
- similarity_check/semantic_meaning_check/semantic.py +7 -2
HTR/hcr.py
CHANGED
@@ -6,37 +6,12 @@ import torch
|
|
6 |
import sys
|
7 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
8 |
from utils import notification_queue, log_print
|
9 |
-
|
10 |
-
# Global variables for model and processor
|
11 |
-
processor = None
|
12 |
-
model = None
|
13 |
-
|
14 |
-
def initialize_model():
|
15 |
-
"""Initialize the TrOCR model and processor"""
|
16 |
-
global processor, model
|
17 |
-
MODEL_NAME = "microsoft/trocr-large-handwritten"
|
18 |
-
try:
|
19 |
-
log_print("Initializing TrOCR model...")
|
20 |
-
processor = TrOCRProcessor.from_pretrained(MODEL_NAME)
|
21 |
-
model = VisionEncoderDecoderModel.from_pretrained(MODEL_NAME)
|
22 |
-
if torch.cuda.is_available():
|
23 |
-
model = model.to('cuda')
|
24 |
-
log_print("Model moved to CUDA")
|
25 |
-
log_print("TrOCR model initialized successfully")
|
26 |
-
except Exception as e:
|
27 |
-
error_msg = str(e)
|
28 |
-
log_print(f"Error initializing TrOCR model: {error_msg}", "ERROR")
|
29 |
-
raise
|
30 |
|
31 |
def text(image_cv):
|
32 |
try:
|
33 |
-
#
|
34 |
-
|
35 |
-
log_print("TrOCR model not initialized, initializing now...")
|
36 |
-
initialize_model()
|
37 |
-
|
38 |
-
if processor is None or model is None:
|
39 |
-
raise RuntimeError("Failed to initialize TrOCR model")
|
40 |
|
41 |
if not isinstance(image_cv, list):
|
42 |
image_cv = [image_cv]
|
@@ -61,7 +36,7 @@ def text(image_cv):
|
|
61 |
# Get pixel values
|
62 |
pixel_values = processor(image, return_tensors="pt").pixel_values
|
63 |
if torch.cuda.is_available():
|
64 |
-
pixel_values = pixel_values.to(
|
65 |
|
66 |
# Generate text
|
67 |
generated_ids = model.generate(pixel_values)
|
@@ -93,4 +68,7 @@ def text(image_cv):
|
|
93 |
"message": error_msg
|
94 |
})
|
95 |
return ""
|
|
|
|
|
|
|
96 |
|
|
|
6 |
import sys
|
7 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
8 |
from utils import notification_queue, log_print
|
9 |
+
from all_models import models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
def text(image_cv):
|
12 |
try:
|
13 |
+
# Get model instance from singleton
|
14 |
+
model, processor = models.get_trocr_model()
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
if not isinstance(image_cv, list):
|
17 |
image_cv = [image_cv]
|
|
|
36 |
# Get pixel values
|
37 |
pixel_values = processor(image, return_tensors="pt").pixel_values
|
38 |
if torch.cuda.is_available():
|
39 |
+
pixel_values = pixel_values.to(models.device)
|
40 |
|
41 |
# Generate text
|
42 |
generated_ids = model.generate(pixel_values)
|
|
|
68 |
"message": error_msg
|
69 |
})
|
70 |
return ""
|
71 |
+
finally:
|
72 |
+
# Release model reference
|
73 |
+
models.release_trocr_model()
|
74 |
|
HTR/strike.py
CHANGED
@@ -6,6 +6,9 @@ import cv2
|
|
6 |
from transformers import AutoModelForImageClassification, AutoConfig
|
7 |
import logging
|
8 |
from pathlib import Path
|
|
|
|
|
|
|
9 |
|
10 |
logging.basicConfig(
|
11 |
level=logging.INFO,
|
@@ -13,75 +16,12 @@ logging.basicConfig(
|
|
13 |
)
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
-
# Global variables
|
17 |
-
model = None
|
18 |
-
TEMP_IMAGES_DIR = None
|
19 |
-
|
20 |
-
# Initialize model at module load time
|
21 |
-
try:
|
22 |
-
logger.info("Initializing model...")
|
23 |
-
|
24 |
-
# Get the absolute path to the model
|
25 |
-
current_dir = os.path.dirname(os.path.abspath(__file__))
|
26 |
-
project_root = os.path.dirname(current_dir) # Changed to one level up
|
27 |
-
model_path = os.path.join(project_root, "models", "vit-base-beans")
|
28 |
-
|
29 |
-
# Check if model path exists and has proper permissions
|
30 |
-
if not os.path.exists(model_path):
|
31 |
-
logger.error(f"Model path does not exist: {model_path}")
|
32 |
-
raise FileNotFoundError(f"Model path does not exist: {model_path}")
|
33 |
-
|
34 |
-
# Check if we have read permissions
|
35 |
-
if not os.access(model_path, os.R_OK):
|
36 |
-
logger.error(f"No read permission for model path: {model_path}")
|
37 |
-
raise PermissionError(f"No read permission for model path: {model_path}")
|
38 |
-
|
39 |
-
# Check for required model files
|
40 |
-
required_files = ['config.json', 'model.safetensors'] # Updated for safetensors
|
41 |
-
for file in required_files:
|
42 |
-
file_path = os.path.join(model_path, file)
|
43 |
-
if not os.path.exists(file_path):
|
44 |
-
logger.error(f"Required model file missing: {file}")
|
45 |
-
raise FileNotFoundError(f"Required model file missing: {file}")
|
46 |
-
if not os.access(file_path, os.R_OK):
|
47 |
-
logger.error(f"No read permission for model file: {file}")
|
48 |
-
raise PermissionError(f"No read permission for model file: {file}")
|
49 |
-
|
50 |
-
logger.info(f"Loading model from: {model_path}")
|
51 |
-
|
52 |
-
# Load model from local path with safetensors support
|
53 |
-
config = AutoConfig.from_pretrained(model_path)
|
54 |
-
model = AutoModelForImageClassification.from_pretrained(
|
55 |
-
model_path,
|
56 |
-
local_files_only=True,
|
57 |
-
use_safetensors=True
|
58 |
-
)
|
59 |
-
|
60 |
-
if torch.cuda.is_available():
|
61 |
-
model = model.to('cuda')
|
62 |
-
logger.info("Model moved to CUDA")
|
63 |
-
else:
|
64 |
-
logger.info("Running on CPU")
|
65 |
-
|
66 |
-
model.eval() # Set to evaluation mode
|
67 |
-
logger.info("Model initialized successfully")
|
68 |
-
except Exception as e:
|
69 |
-
logger.error(f"Error initializing model: {str(e)}")
|
70 |
-
model = None
|
71 |
-
|
72 |
def image_preprocessing(image):
|
73 |
try:
|
74 |
images = []
|
75 |
for i in image:
|
76 |
-
# print(i)
|
77 |
-
# img = cv2.imread(i)
|
78 |
binary_image = i
|
79 |
-
# converting into grayscale
|
80 |
-
# gray_image = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
81 |
-
# convrting into binaryimage
|
82 |
-
# _, binary_image = cv2.threshold(gray_image, 200, 255, cv2.THRESH_BINARY)
|
83 |
binary_image = cv2.resize(binary_image, (224, 224))
|
84 |
-
# binary_image = np.expand_dims(binary_image, axis=-1)
|
85 |
binary_image = cv2.merge([binary_image, binary_image, binary_image])
|
86 |
binary_image = binary_image/255
|
87 |
binary_image = torch.from_numpy(binary_image)
|
@@ -92,8 +32,11 @@ def image_preprocessing(image):
|
|
92 |
logger.error(f"Error in image_preprocessing: {str(e)}")
|
93 |
return None
|
94 |
|
95 |
-
def predict_image(images
|
96 |
try:
|
|
|
|
|
|
|
97 |
preprocessed_img = image_preprocessing(images)
|
98 |
if preprocessed_img is None:
|
99 |
logger.error("Image preprocessing failed")
|
@@ -113,19 +56,13 @@ def predict_image(images, model):
|
|
113 |
except Exception as e:
|
114 |
logger.error(f"Error in predict_image: {str(e)}")
|
115 |
return None
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
logger.warning("Processing without model - returning all images as not struck")
|
120 |
-
return images # Return all images as not struck
|
121 |
|
122 |
def struck_images(word_images):
|
123 |
try:
|
124 |
-
|
125 |
-
logger.warning("Model not initialized, processing without model")
|
126 |
-
return word_images
|
127 |
-
|
128 |
-
predictions = predict_image(word_images, model)
|
129 |
if predictions is None:
|
130 |
logger.warning("Predictions failed, processing without model")
|
131 |
return word_images
|
|
|
6 |
from transformers import AutoModelForImageClassification, AutoConfig
|
7 |
import logging
|
8 |
from pathlib import Path
|
9 |
+
import sys
|
10 |
+
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
11 |
+
from all_models import models
|
12 |
|
13 |
logging.basicConfig(
|
14 |
level=logging.INFO,
|
|
|
16 |
)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def image_preprocessing(image):
|
20 |
try:
|
21 |
images = []
|
22 |
for i in image:
|
|
|
|
|
23 |
binary_image = i
|
|
|
|
|
|
|
|
|
24 |
binary_image = cv2.resize(binary_image, (224, 224))
|
|
|
25 |
binary_image = cv2.merge([binary_image, binary_image, binary_image])
|
26 |
binary_image = binary_image/255
|
27 |
binary_image = torch.from_numpy(binary_image)
|
|
|
32 |
logger.error(f"Error in image_preprocessing: {str(e)}")
|
33 |
return None
|
34 |
|
35 |
+
def predict_image(images):
|
36 |
try:
|
37 |
+
# Get model instance from singleton
|
38 |
+
model, processor = models.get_vit_model()
|
39 |
+
|
40 |
preprocessed_img = image_preprocessing(images)
|
41 |
if preprocessed_img is None:
|
42 |
logger.error("Image preprocessing failed")
|
|
|
56 |
except Exception as e:
|
57 |
logger.error(f"Error in predict_image: {str(e)}")
|
58 |
return None
|
59 |
+
finally:
|
60 |
+
# Release model reference
|
61 |
+
models.release_vit_model()
|
|
|
|
|
62 |
|
63 |
def struck_images(word_images):
|
64 |
try:
|
65 |
+
predictions = predict_image(word_images)
|
|
|
|
|
|
|
|
|
66 |
if predictions is None:
|
67 |
logger.warning("Predictions failed, processing without model")
|
68 |
return word_images
|
all_models.py
CHANGED
@@ -36,10 +36,16 @@ class ModelSingleton:
|
|
36 |
self.similarity_model = None
|
37 |
self.flan_tokenizer = None
|
38 |
self.flan_model = None
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# Initialize reference counts
|
41 |
self._reference_counts['similarity'] = 0
|
42 |
self._reference_counts['flan'] = 0
|
|
|
|
|
43 |
|
44 |
self._initialized = True
|
45 |
logger.info("Model singleton initialized")
|
@@ -96,6 +102,93 @@ class ModelSingleton:
|
|
96 |
logger.error(f"Error loading Flan-T5 model: {e}")
|
97 |
raise
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
def release_similarity_model(self):
|
100 |
"""Release reference to similarity model"""
|
101 |
self._reference_counts['similarity'] -= 1
|
@@ -108,6 +201,18 @@ class ModelSingleton:
|
|
108 |
if self._reference_counts['flan'] <= 0:
|
109 |
self._cleanup_flan_model()
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
def _cleanup_similarity_model(self):
|
112 |
"""Clean up similarity model resources"""
|
113 |
if self.similarity_model is not None:
|
@@ -126,16 +231,53 @@ class ModelSingleton:
|
|
126 |
torch.cuda.empty_cache()
|
127 |
logger.info("Flan-T5 model resources cleaned up")
|
128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
def cleanup(self):
|
130 |
"""Clean up all model resources"""
|
131 |
try:
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
self._reference_counts
|
136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
except Exception as e:
|
138 |
-
logger.error(f"Error during cleanup: {e}")
|
|
|
139 |
|
140 |
# Create global instance
|
141 |
models = ModelSingleton()
|
|
|
36 |
self.similarity_model = None
|
37 |
self.flan_tokenizer = None
|
38 |
self.flan_model = None
|
39 |
+
self.trocr_processor = None
|
40 |
+
self.trocr_model = None
|
41 |
+
self.vit_model = None
|
42 |
+
self.vit_processor = None
|
43 |
|
44 |
# Initialize reference counts
|
45 |
self._reference_counts['similarity'] = 0
|
46 |
self._reference_counts['flan'] = 0
|
47 |
+
self._reference_counts['trocr'] = 0
|
48 |
+
self._reference_counts['vit'] = 0
|
49 |
|
50 |
self._initialized = True
|
51 |
logger.info("Model singleton initialized")
|
|
|
102 |
logger.error(f"Error loading Flan-T5 model: {e}")
|
103 |
raise
|
104 |
|
105 |
+
def get_trocr_model(self):
|
106 |
+
"""Get TrOCR model with reference counting"""
|
107 |
+
try:
|
108 |
+
if self.trocr_model is None:
|
109 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
110 |
+
logger.info("Loading TrOCR model...")
|
111 |
+
MODEL_NAME = "microsoft/trocr-large-handwritten"
|
112 |
+
self.trocr_processor = TrOCRProcessor.from_pretrained(MODEL_NAME)
|
113 |
+
self.trocr_model = VisionEncoderDecoderModel.from_pretrained(MODEL_NAME)
|
114 |
+
self.trocr_model.to(self.device)
|
115 |
+
logger.info("TrOCR model loaded successfully")
|
116 |
+
|
117 |
+
self._reference_counts['trocr'] += 1
|
118 |
+
return self.trocr_model, self.trocr_processor
|
119 |
+
except Exception as e:
|
120 |
+
logger.error(f"Error loading TrOCR model: {e}")
|
121 |
+
raise
|
122 |
+
|
123 |
+
def get_vit_model(self):
|
124 |
+
"""Get ViT model with reference counting"""
|
125 |
+
try:
|
126 |
+
if self.vit_model is None:
|
127 |
+
from transformers import ViTImageProcessor, ViTModel, AutoModelForImageClassification, AutoConfig
|
128 |
+
logger.info("Loading ViT model...")
|
129 |
+
|
130 |
+
# Get model path - fix to use project root
|
131 |
+
import os
|
132 |
+
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
133 |
+
model_path = os.path.join(project_root, 'models', 'vit-base-beans')
|
134 |
+
|
135 |
+
logger.info(f"Looking for model at: {model_path}")
|
136 |
+
|
137 |
+
if not os.path.exists(model_path):
|
138 |
+
raise FileNotFoundError(f"Model path does not exist: {model_path}")
|
139 |
+
|
140 |
+
# Check for model files
|
141 |
+
model_files = os.listdir(model_path)
|
142 |
+
logger.info(f"Found model files: {model_files}")
|
143 |
+
|
144 |
+
if 'model.safetensors' not in model_files or 'config.json' not in model_files:
|
145 |
+
raise FileNotFoundError(f"Required model files missing in {model_path}")
|
146 |
+
|
147 |
+
# Create processor with explicit settings
|
148 |
+
self.vit_processor = ViTImageProcessor(
|
149 |
+
do_resize=True,
|
150 |
+
size=224,
|
151 |
+
do_normalize=True,
|
152 |
+
image_mean=[0.5, 0.5, 0.5],
|
153 |
+
image_std=[0.5, 0.5, 0.5]
|
154 |
+
)
|
155 |
+
|
156 |
+
try:
|
157 |
+
# Load model with explicit settings
|
158 |
+
logger.info("Loading ViT model with safetensors...")
|
159 |
+
self.vit_model = ViTModel.from_pretrained(
|
160 |
+
model_path,
|
161 |
+
local_files_only=True,
|
162 |
+
use_safetensors=True,
|
163 |
+
trust_remote_code=False
|
164 |
+
)
|
165 |
+
self.vit_model.to(self.device)
|
166 |
+
self.vit_model.eval()
|
167 |
+
logger.info("ViT model loaded successfully")
|
168 |
+
except Exception as model_error:
|
169 |
+
logger.error(f"Error loading model: {model_error}")
|
170 |
+
# Try alternative loading method
|
171 |
+
try:
|
172 |
+
logger.info("Attempting alternative model loading...")
|
173 |
+
self.vit_model = AutoModelForImageClassification.from_pretrained(
|
174 |
+
model_path,
|
175 |
+
local_files_only=True,
|
176 |
+
use_safetensors=True,
|
177 |
+
trust_remote_code=False
|
178 |
+
)
|
179 |
+
self.vit_model.to(self.device)
|
180 |
+
self.vit_model.eval()
|
181 |
+
logger.info("ViT model loaded successfully using alternative method")
|
182 |
+
except Exception as alt_error:
|
183 |
+
logger.error(f"Alternative loading also failed: {alt_error}")
|
184 |
+
raise
|
185 |
+
|
186 |
+
self._reference_counts['vit'] += 1
|
187 |
+
return self.vit_model, self.vit_processor
|
188 |
+
except Exception as e:
|
189 |
+
logger.error(f"Error loading ViT model: {e}")
|
190 |
+
raise
|
191 |
+
|
192 |
def release_similarity_model(self):
|
193 |
"""Release reference to similarity model"""
|
194 |
self._reference_counts['similarity'] -= 1
|
|
|
201 |
if self._reference_counts['flan'] <= 0:
|
202 |
self._cleanup_flan_model()
|
203 |
|
204 |
+
def release_trocr_model(self):
|
205 |
+
"""Release reference to TrOCR model"""
|
206 |
+
self._reference_counts['trocr'] -= 1
|
207 |
+
if self._reference_counts['trocr'] <= 0:
|
208 |
+
self._cleanup_trocr_model()
|
209 |
+
|
210 |
+
def release_vit_model(self):
|
211 |
+
"""Release reference to ViT model"""
|
212 |
+
self._reference_counts['vit'] -= 1
|
213 |
+
if self._reference_counts['vit'] <= 0:
|
214 |
+
self._cleanup_vit_model()
|
215 |
+
|
216 |
def _cleanup_similarity_model(self):
|
217 |
"""Clean up similarity model resources"""
|
218 |
if self.similarity_model is not None:
|
|
|
231 |
torch.cuda.empty_cache()
|
232 |
logger.info("Flan-T5 model resources cleaned up")
|
233 |
|
234 |
+
def _cleanup_trocr_model(self):
|
235 |
+
"""Clean up TrOCR model resources"""
|
236 |
+
if self.trocr_model is not None:
|
237 |
+
del self.trocr_model
|
238 |
+
del self.trocr_processor
|
239 |
+
self.trocr_model = None
|
240 |
+
self.trocr_processor = None
|
241 |
+
torch.cuda.empty_cache()
|
242 |
+
logger.info("TrOCR model resources cleaned up")
|
243 |
+
|
244 |
+
def _cleanup_vit_model(self):
|
245 |
+
"""Clean up ViT model resources"""
|
246 |
+
if self.vit_model is not None:
|
247 |
+
del self.vit_model
|
248 |
+
del self.vit_processor
|
249 |
+
self.vit_model = None
|
250 |
+
self.vit_processor = None
|
251 |
+
torch.cuda.empty_cache()
|
252 |
+
logger.info("ViT model resources cleaned up")
|
253 |
+
|
254 |
def cleanup(self):
|
255 |
"""Clean up all model resources"""
|
256 |
try:
|
257 |
+
logger.info("Starting model cleanup...")
|
258 |
+
|
259 |
+
# Clean up each model type
|
260 |
+
if self._reference_counts.get('similarity', 0) > 0:
|
261 |
+
self._cleanup_similarity_model()
|
262 |
+
if self._reference_counts.get('flan', 0) > 0:
|
263 |
+
self._cleanup_flan_model()
|
264 |
+
if self._reference_counts.get('trocr', 0) > 0:
|
265 |
+
self._cleanup_trocr_model()
|
266 |
+
if self._reference_counts.get('vit', 0) > 0:
|
267 |
+
self._cleanup_vit_model()
|
268 |
+
|
269 |
+
# Reset reference counts
|
270 |
+
for model_type in self._reference_counts:
|
271 |
+
self._reference_counts[model_type] = 0
|
272 |
+
|
273 |
+
# Force CUDA cache cleanup
|
274 |
+
if torch.cuda.is_available():
|
275 |
+
torch.cuda.empty_cache()
|
276 |
+
|
277 |
+
logger.info("Model cleanup completed successfully")
|
278 |
except Exception as e:
|
279 |
+
logger.error(f"Error during model cleanup: {e}")
|
280 |
+
# Continue cleanup even if there's an error
|
281 |
|
282 |
# Create global instance
|
283 |
models = ModelSingleton()
|
main.py
CHANGED
@@ -5,6 +5,8 @@ import psutil
|
|
5 |
import time
|
6 |
import logging
|
7 |
import queue
|
|
|
|
|
8 |
|
9 |
# Set up logging first
|
10 |
logging.basicConfig(
|
@@ -74,7 +76,6 @@ from dotenv import load_dotenv
|
|
74 |
warnings.filterwarnings('ignore')
|
75 |
|
76 |
# Import ML libraries
|
77 |
-
import torch
|
78 |
import nltk
|
79 |
import gensim
|
80 |
from gensim.models import FastText
|
@@ -137,6 +138,9 @@ log_file = os.path.join(log_dir, 'app.log') # Add log file path
|
|
137 |
global_models = {}
|
138 |
initialization_complete = Event()
|
139 |
|
|
|
|
|
|
|
140 |
def ensure_directory(path):
|
141 |
"""Create directory and ensure full permissions with better error handling"""
|
142 |
if os.path.exists(path):
|
@@ -178,14 +182,20 @@ def get_or_load_model(model_name):
|
|
178 |
from gensim.models import KeyedVectors
|
179 |
log_print(f"Loading {model_name} model...")
|
180 |
model_path = os.path.join(gensim_data_dir, 'fasttext-wiki-news-subwords-300', 'fasttext-wiki-news-subwords-300.gz')
|
|
|
|
|
181 |
try:
|
182 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
from gensim.downloader import load
|
184 |
log_print("Downloading fasttext model...")
|
185 |
model = load('fasttext-wiki-news-subwords-300')
|
186 |
-
else:
|
187 |
-
log_print("Loading fasttext model from cache...")
|
188 |
-
model = KeyedVectors.load_word2vec_format(model_path)
|
189 |
|
190 |
# Move model to CPU explicitly if it has the 'to' method
|
191 |
if hasattr(model, 'to'):
|
@@ -523,8 +533,8 @@ def cleanup_memory():
|
|
523 |
# Clear Python garbage collection
|
524 |
gc.collect()
|
525 |
|
526 |
-
#
|
527 |
-
if
|
528 |
models.cleanup()
|
529 |
|
530 |
# Log memory usage
|
|
|
5 |
import time
|
6 |
import logging
|
7 |
import queue
|
8 |
+
import torch
|
9 |
+
from all_models import ModelSingleton
|
10 |
|
11 |
# Set up logging first
|
12 |
logging.basicConfig(
|
|
|
76 |
warnings.filterwarnings('ignore')
|
77 |
|
78 |
# Import ML libraries
|
|
|
79 |
import nltk
|
80 |
import gensim
|
81 |
from gensim.models import FastText
|
|
|
138 |
global_models = {}
|
139 |
initialization_complete = Event()
|
140 |
|
141 |
+
# Initialize model singleton
|
142 |
+
models = ModelSingleton()
|
143 |
+
|
144 |
def ensure_directory(path):
|
145 |
"""Create directory and ensure full permissions with better error handling"""
|
146 |
if os.path.exists(path):
|
|
|
182 |
from gensim.models import KeyedVectors
|
183 |
log_print(f"Loading {model_name} model...")
|
184 |
model_path = os.path.join(gensim_data_dir, 'fasttext-wiki-news-subwords-300', 'fasttext-wiki-news-subwords-300.gz')
|
185 |
+
model_dir = os.path.dirname(model_path)
|
186 |
+
|
187 |
try:
|
188 |
+
# Create model directory if it doesn't exist
|
189 |
+
os.makedirs(model_dir, exist_ok=True)
|
190 |
+
|
191 |
+
if os.path.exists(model_path):
|
192 |
+
log_print("Loading fasttext model from cache...")
|
193 |
+
model = KeyedVectors.load_word2vec_format(model_path)
|
194 |
+
else:
|
195 |
+
# Only download if file doesn't exist
|
196 |
from gensim.downloader import load
|
197 |
log_print("Downloading fasttext model...")
|
198 |
model = load('fasttext-wiki-news-subwords-300')
|
|
|
|
|
|
|
199 |
|
200 |
# Move model to CPU explicitly if it has the 'to' method
|
201 |
if hasattr(model, 'to'):
|
|
|
533 |
# Clear Python garbage collection
|
534 |
gc.collect()
|
535 |
|
536 |
+
# Clean up models
|
537 |
+
if models:
|
538 |
models.cleanup()
|
539 |
|
540 |
# Log memory usage
|
similarity_check/semantic_meaning_check/semantic.py
CHANGED
@@ -26,8 +26,13 @@ os.environ['GENSIM_DATA_DIR'] = gensim_data_dir
|
|
26 |
|
27 |
# Load fasttext with error handling
|
28 |
try:
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
31 |
except Exception as e:
|
32 |
print(f"Error loading fasttext model: {e}")
|
33 |
# Provide a fallback for similarity calculations
|
|
|
26 |
|
27 |
# Load fasttext with error handling
|
28 |
try:
|
29 |
+
model_path = os.path.join(gensim_data_dir, 'fasttext-wiki-news-subwords-300', 'fasttext-wiki-news-subwords-300.gz')
|
30 |
+
if os.path.exists(model_path):
|
31 |
+
print("Loading fasttext model from cache...")
|
32 |
+
fasttext = KeyedVectors.load_word2vec_format(model_path)
|
33 |
+
else:
|
34 |
+
print("Loading fasttext model...")
|
35 |
+
fasttext = load('fasttext-wiki-news-subwords-300')
|
36 |
except Exception as e:
|
37 |
print(f"Error loading fasttext model: {e}")
|
38 |
# Provide a fallback for similarity calculations
|