Commit
·
7a9da00
1
Parent(s):
033e08c
update_
Browse files
main.py
CHANGED
@@ -3,18 +3,37 @@ import tempfile
|
|
3 |
import nltk
|
4 |
import logging
|
5 |
import sys
|
|
|
6 |
|
7 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
logging.basicConfig(
|
9 |
level=logging.INFO,
|
10 |
format='%(asctime)s - %(levelname)s - %(message)s',
|
11 |
handlers=[
|
|
|
12 |
logging.StreamHandler(sys.stdout)
|
13 |
]
|
14 |
)
|
15 |
|
16 |
logger = logging.getLogger(__name__)
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
# Set up all cache and data directories in /tmp
|
19 |
cache_dir = tempfile.mkdtemp()
|
20 |
nltk_data_dir = os.path.join(cache_dir, 'nltk_data')
|
@@ -135,30 +154,30 @@ def compute_marks():
|
|
135 |
# Get and process answers
|
136 |
a = request.form.get('answers')
|
137 |
if not a:
|
138 |
-
|
139 |
return jsonify({"error": "No answers provided"}), 400
|
140 |
|
141 |
-
|
142 |
-
|
143 |
a = json.loads(a)
|
144 |
answers = []
|
145 |
for i in a:
|
146 |
ans = i.split('\n\n')
|
147 |
answers.append(ans)
|
148 |
-
|
149 |
|
150 |
# Process files and create data structure
|
151 |
data = {}
|
152 |
parent_folder = os.path.join(cache_dir, 'student_answers')
|
153 |
os.makedirs(parent_folder, exist_ok=True)
|
154 |
|
155 |
-
|
156 |
files = request.files.getlist('files[]')
|
157 |
if not files:
|
158 |
-
|
159 |
return jsonify({"error": "No files uploaded"}), 400
|
160 |
|
161 |
-
|
162 |
|
163 |
# File processing with logging
|
164 |
for file in files:
|
@@ -166,8 +185,8 @@ def compute_marks():
|
|
166 |
relative_path = file.filename.replace('\\', '/')
|
167 |
path_parts = relative_path.split('/')
|
168 |
|
169 |
-
|
170 |
-
|
171 |
|
172 |
if len(path_parts) >= 2:
|
173 |
student_folder = path_parts[1]
|
@@ -178,7 +197,7 @@ def compute_marks():
|
|
178 |
|
179 |
save_path = os.path.join(student_dir, file_name)
|
180 |
file.save(save_path)
|
181 |
-
|
182 |
|
183 |
if student_folder not in data:
|
184 |
data[student_folder] = []
|
@@ -187,14 +206,14 @@ def compute_marks():
|
|
187 |
'name': os.path.splitext(file_name)[0]
|
188 |
})
|
189 |
else:
|
190 |
-
|
191 |
|
192 |
# Log data structure
|
193 |
-
|
194 |
for student, images in data.items():
|
195 |
-
|
196 |
for img in sorted(images, key=lambda x: x['name']):
|
197 |
-
|
198 |
|
199 |
# Calculate marks with logging
|
200 |
results = []
|
@@ -208,11 +227,11 @@ def compute_marks():
|
|
208 |
try:
|
209 |
image_path = image_info['path']
|
210 |
s_answer = extract_text_from_image(image_path)
|
211 |
-
|
212 |
-
|
213 |
|
214 |
if s_answer and idx < len(answers):
|
215 |
-
|
216 |
tf_idf_word_values, max_tfidf = create_tfidf_values(answers[idx])
|
217 |
m = marks(s_answer, sen_vec_answers[idx], word_vec_answers[idx],
|
218 |
tf_idf_word_values, max_tfidf, answers[idx])
|
@@ -222,10 +241,10 @@ def compute_marks():
|
|
222 |
mark_value = round(float(m), 2)
|
223 |
student_total += mark_value
|
224 |
student_count += 1
|
225 |
-
|
226 |
else:
|
227 |
mark_value = 0
|
228 |
-
|
229 |
|
230 |
results.append({
|
231 |
'student': student_folder,
|
@@ -234,7 +253,7 @@ def compute_marks():
|
|
234 |
})
|
235 |
|
236 |
except Exception as e:
|
237 |
-
|
238 |
results.append({
|
239 |
'student': student_folder,
|
240 |
'image_name': image_info['name'],
|
@@ -244,17 +263,17 @@ def compute_marks():
|
|
244 |
# Sort results
|
245 |
results.sort(key=lambda x: (x['student'], x['image_name']))
|
246 |
|
247 |
-
|
248 |
for r in results:
|
249 |
-
|
250 |
|
251 |
# Clean up temporary directory
|
252 |
try:
|
253 |
import shutil
|
254 |
shutil.rmtree(parent_folder)
|
255 |
-
|
256 |
except Exception as e:
|
257 |
-
|
258 |
|
259 |
return jsonify({
|
260 |
"message": results,
|
@@ -262,7 +281,7 @@ def compute_marks():
|
|
262 |
}), 200
|
263 |
|
264 |
except Exception as e:
|
265 |
-
|
266 |
try:
|
267 |
import shutil
|
268 |
shutil.rmtree(parent_folder)
|
@@ -274,19 +293,19 @@ def compute_marks():
|
|
274 |
|
275 |
def marks(answer, sen_vec_answers, word_vec_answers, tf_idf_word_values, max_tfidf, correct_answers):
|
276 |
marks = 0
|
277 |
-
|
278 |
-
|
279 |
|
280 |
marks1 = tfidf_answer_score(answer, tf_idf_word_values, max_tfidf, marks=10)
|
281 |
-
|
282 |
|
283 |
if marks1 > 3:
|
284 |
marks += new_value(marks1, old_min=3, old_max=10, new_min=0, new_max=5)
|
285 |
-
|
286 |
|
287 |
if marks1 > 2:
|
288 |
marks2 = similarity_model_score(sen_vec_answers, answer)
|
289 |
-
|
290 |
|
291 |
if marks2 > 0.95:
|
292 |
marks += 3
|
@@ -294,26 +313,26 @@ def marks(answer, sen_vec_answers, word_vec_answers, tf_idf_word_values, max_tfi
|
|
294 |
marks += new_value(marks2, old_min=0.5, old_max=0.95, new_min=0, new_max=3)
|
295 |
|
296 |
marks3 = fasttext_similarity(word_vec_answers, answer)
|
297 |
-
|
298 |
|
299 |
-
if marks3 > 0.9:
|
300 |
marks += 2
|
301 |
elif marks3 > 0.4:
|
302 |
marks += new_value(marks3, old_min=0.4, old_max=0.9, new_min=0, new_max=2)
|
303 |
|
304 |
marks4 = llm_score(correct_answers, answer)
|
305 |
-
|
306 |
|
307 |
for i in range(len(marks4)):
|
308 |
marks4[i] = float(marks4[i])
|
309 |
|
310 |
m = max(marks4)
|
311 |
-
|
312 |
|
313 |
marks = marks/2 + m/2
|
314 |
-
|
315 |
else:
|
316 |
-
|
317 |
|
318 |
return marks
|
319 |
|
|
|
3 |
import nltk
|
4 |
import logging
|
5 |
import sys
|
6 |
+
from datetime import datetime
|
7 |
|
8 |
+
# Create a logs directory in the temp folder
|
9 |
+
log_dir = os.path.join(tempfile.gettempdir(), 'app_logs')
|
10 |
+
os.makedirs(log_dir, exist_ok=True)
|
11 |
+
|
12 |
+
# Create a log file with timestamp
|
13 |
+
log_file = os.path.join(log_dir, f'app_{datetime.now().strftime("%Y%m%d_%H%M%S")}.log')
|
14 |
+
|
15 |
+
# Set up logging to both file and console
|
16 |
logging.basicConfig(
|
17 |
level=logging.INFO,
|
18 |
format='%(asctime)s - %(levelname)s - %(message)s',
|
19 |
handlers=[
|
20 |
+
logging.FileHandler(log_file),
|
21 |
logging.StreamHandler(sys.stdout)
|
22 |
]
|
23 |
)
|
24 |
|
25 |
logger = logging.getLogger(__name__)
|
26 |
|
27 |
+
# Add a print function that also logs
|
28 |
+
def log_print(message, level="INFO"):
|
29 |
+
print(message) # This will show in Hugging Face logs
|
30 |
+
if level == "INFO":
|
31 |
+
logger.info(message)
|
32 |
+
elif level == "ERROR":
|
33 |
+
logger.error(message)
|
34 |
+
elif level == "WARNING":
|
35 |
+
logger.warning(message)
|
36 |
+
|
37 |
# Set up all cache and data directories in /tmp
|
38 |
cache_dir = tempfile.mkdtemp()
|
39 |
nltk_data_dir = os.path.join(cache_dir, 'nltk_data')
|
|
|
154 |
# Get and process answers
|
155 |
a = request.form.get('answers')
|
156 |
if not a:
|
157 |
+
log_print("No answers provided", "ERROR")
|
158 |
return jsonify({"error": "No answers provided"}), 400
|
159 |
|
160 |
+
log_print("=== Processing Answers ===")
|
161 |
+
log_print(f"Received answers: {a}")
|
162 |
a = json.loads(a)
|
163 |
answers = []
|
164 |
for i in a:
|
165 |
ans = i.split('\n\n')
|
166 |
answers.append(ans)
|
167 |
+
log_print(f"Processed answers structure: {answers}")
|
168 |
|
169 |
# Process files and create data structure
|
170 |
data = {}
|
171 |
parent_folder = os.path.join(cache_dir, 'student_answers')
|
172 |
os.makedirs(parent_folder, exist_ok=True)
|
173 |
|
174 |
+
log_print("=== Processing Uploaded Files ===")
|
175 |
files = request.files.getlist('files[]')
|
176 |
if not files:
|
177 |
+
log_print("No files uploaded", "ERROR")
|
178 |
return jsonify({"error": "No files uploaded"}), 400
|
179 |
|
180 |
+
log_print(f"Number of files received: {len(files)}")
|
181 |
|
182 |
# File processing with logging
|
183 |
for file in files:
|
|
|
185 |
relative_path = file.filename.replace('\\', '/')
|
186 |
path_parts = relative_path.split('/')
|
187 |
|
188 |
+
log_print(f"Processing file: {file.filename}")
|
189 |
+
log_print(f"Path parts: {path_parts}")
|
190 |
|
191 |
if len(path_parts) >= 2:
|
192 |
student_folder = path_parts[1]
|
|
|
197 |
|
198 |
save_path = os.path.join(student_dir, file_name)
|
199 |
file.save(save_path)
|
200 |
+
log_print(f"Saved file: {save_path}")
|
201 |
|
202 |
if student_folder not in data:
|
203 |
data[student_folder] = []
|
|
|
206 |
'name': os.path.splitext(file_name)[0]
|
207 |
})
|
208 |
else:
|
209 |
+
log_print(f"File {file.filename} doesn't have expected structure", "WARNING")
|
210 |
|
211 |
# Log data structure
|
212 |
+
log_print("=== Final Data Structure ===")
|
213 |
for student, images in data.items():
|
214 |
+
log_print(f"Student: {student}")
|
215 |
for img in sorted(images, key=lambda x: x['name']):
|
216 |
+
log_print(f" - {img['name']} ({img['path']})")
|
217 |
|
218 |
# Calculate marks with logging
|
219 |
results = []
|
|
|
227 |
try:
|
228 |
image_path = image_info['path']
|
229 |
s_answer = extract_text_from_image(image_path)
|
230 |
+
log_print(f"\nProcessing {student_folder}/{image_info['name']}:")
|
231 |
+
log_print(f"Extracted answer: {s_answer}")
|
232 |
|
233 |
if s_answer and idx < len(answers):
|
234 |
+
log_print(f"Reference answer: {answers[idx]}")
|
235 |
tf_idf_word_values, max_tfidf = create_tfidf_values(answers[idx])
|
236 |
m = marks(s_answer, sen_vec_answers[idx], word_vec_answers[idx],
|
237 |
tf_idf_word_values, max_tfidf, answers[idx])
|
|
|
241 |
mark_value = round(float(m), 2)
|
242 |
student_total += mark_value
|
243 |
student_count += 1
|
244 |
+
log_print(f"Marks awarded: {mark_value}")
|
245 |
else:
|
246 |
mark_value = 0
|
247 |
+
log_print(f"No text extracted or no reference answer for index {idx}", "WARNING")
|
248 |
|
249 |
results.append({
|
250 |
'student': student_folder,
|
|
|
253 |
})
|
254 |
|
255 |
except Exception as e:
|
256 |
+
log_print(f"Error processing {image_path}: {str(e)}", "ERROR")
|
257 |
results.append({
|
258 |
'student': student_folder,
|
259 |
'image_name': image_info['name'],
|
|
|
263 |
# Sort results
|
264 |
results.sort(key=lambda x: (x['student'], x['image_name']))
|
265 |
|
266 |
+
log_print("\nFinal Results:")
|
267 |
for r in results:
|
268 |
+
log_print(f"{r['student']}\t{r['image_name']}\t{r['marks']}")
|
269 |
|
270 |
# Clean up temporary directory
|
271 |
try:
|
272 |
import shutil
|
273 |
shutil.rmtree(parent_folder)
|
274 |
+
log_print(f"Cleaned up temporary directory: {parent_folder}")
|
275 |
except Exception as e:
|
276 |
+
log_print(f"Warning: Could not clean up temporary directory: {e}", "WARNING")
|
277 |
|
278 |
return jsonify({
|
279 |
"message": results,
|
|
|
281 |
}), 200
|
282 |
|
283 |
except Exception as e:
|
284 |
+
log_print(f"Error in compute_marks: {str(e)}", "ERROR")
|
285 |
try:
|
286 |
import shutil
|
287 |
shutil.rmtree(parent_folder)
|
|
|
293 |
|
294 |
def marks(answer, sen_vec_answers, word_vec_answers, tf_idf_word_values, max_tfidf, correct_answers):
|
295 |
marks = 0
|
296 |
+
log_print("=== Marks Calculation ===")
|
297 |
+
log_print(f"Processing answer: {answer[:100]}...") # Log first 100 chars
|
298 |
|
299 |
marks1 = tfidf_answer_score(answer, tf_idf_word_values, max_tfidf, marks=10)
|
300 |
+
log_print(f"TFIDF Score: {marks1}")
|
301 |
|
302 |
if marks1 > 3:
|
303 |
marks += new_value(marks1, old_min=3, old_max=10, new_min=0, new_max=5)
|
304 |
+
log_print(f"After TFIDF adjustment: {marks}")
|
305 |
|
306 |
if marks1 > 2:
|
307 |
marks2 = similarity_model_score(sen_vec_answers, answer)
|
308 |
+
log_print(f"Sentence Similarity Score: {marks2}")
|
309 |
|
310 |
if marks2 > 0.95:
|
311 |
marks += 3
|
|
|
313 |
marks += new_value(marks2, old_min=0.5, old_max=0.95, new_min=0, new_max=3)
|
314 |
|
315 |
marks3 = fasttext_similarity(word_vec_answers, answer)
|
316 |
+
log_print(f"Word Similarity Score: {marks3}")
|
317 |
|
318 |
+
if marks3 > 0.9:
|
319 |
marks += 2
|
320 |
elif marks3 > 0.4:
|
321 |
marks += new_value(marks3, old_min=0.4, old_max=0.9, new_min=0, new_max=2)
|
322 |
|
323 |
marks4 = llm_score(correct_answers, answer)
|
324 |
+
log_print(f"LLM Scores: {marks4}")
|
325 |
|
326 |
for i in range(len(marks4)):
|
327 |
marks4[i] = float(marks4[i])
|
328 |
|
329 |
m = max(marks4)
|
330 |
+
log_print(f"Max LLM Score: {m}")
|
331 |
|
332 |
marks = marks/2 + m/2
|
333 |
+
log_print(f"Final marks: {marks}")
|
334 |
else:
|
335 |
+
log_print("TFIDF score too low, returning 0", "WARNING")
|
336 |
|
337 |
return marks
|
338 |
|