Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from basicsr.data.data_util import paired_paths_from_folder, paired_paths_from_lmdb | |
from basicsr.data.transforms import augment, paired_random_crop | |
from basicsr.utils import FileClient, imfrombytes, img2tensor | |
from basicsr.utils.registry import DATASET_REGISTRY | |
from torch.utils import data as data | |
from torchvision.transforms.functional import normalize | |
class RealESRGANPairedDataset(data.Dataset): | |
"""Paired image dataset for image restoration. | |
Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc) and GT image pairs. | |
There are three modes: | |
1. 'lmdb': Use lmdb files. | |
If opt['io_backend'] == lmdb. | |
2. 'meta_info': Use meta information file to generate paths. | |
If opt['io_backend'] != lmdb and opt['meta_info'] is not None. | |
3. 'folder': Scan folders to generate paths. | |
The rest. | |
Args: | |
opt (dict): Config for train datasets. It contains the following keys: | |
dataroot_gt (str): Data root path for gt. | |
dataroot_lq (str): Data root path for lq. | |
meta_info (str): Path for meta information file. | |
io_backend (dict): IO backend type and other kwarg. | |
filename_tmpl (str): Template for each filename. Note that the template excludes the file extension. | |
Default: '{}'. | |
gt_size (int): Cropped patched size for gt patches. | |
use_hflip (bool): Use horizontal flips. | |
use_rot (bool): Use rotation (use vertical flip and transposing h | |
and w for implementation). | |
scale (bool): Scale, which will be added automatically. | |
phase (str): 'train' or 'val'. | |
""" | |
def __init__(self, opt): | |
super(RealESRGANPairedDataset, self).__init__() | |
self.opt = opt | |
self.file_client = None | |
self.io_backend_opt = opt["io_backend"] | |
# mean and std for normalizing the input images | |
self.mean = opt["mean"] if "mean" in opt else None | |
self.std = opt["std"] if "std" in opt else None | |
self.gt_folder, self.lq_folder = opt["dataroot_gt"], opt["dataroot_lq"] | |
self.filename_tmpl = opt["filename_tmpl"] if "filename_tmpl" in opt else "{}" | |
# file client (lmdb io backend) | |
if self.io_backend_opt["type"] == "lmdb": | |
self.io_backend_opt["db_paths"] = [self.lq_folder, self.gt_folder] | |
self.io_backend_opt["client_keys"] = ["lq", "gt"] | |
self.paths = paired_paths_from_lmdb( | |
[self.lq_folder, self.gt_folder], ["lq", "gt"] | |
) | |
elif "meta_info" in self.opt and self.opt["meta_info"] is not None: | |
# disk backend with meta_info | |
# Each line in the meta_info describes the relative path to an image | |
with open(self.opt["meta_info"]) as fin: | |
paths = [line.strip() for line in fin] | |
self.paths = [] | |
for path in paths: | |
gt_path, lq_path = path.split(", ") | |
gt_path = os.path.join(self.gt_folder, gt_path) | |
lq_path = os.path.join(self.lq_folder, lq_path) | |
self.paths.append(dict([("gt_path", gt_path), ("lq_path", lq_path)])) | |
else: | |
# disk backend | |
# it will scan the whole folder to get meta info | |
# it will be time-consuming for folders with too many files. It is recommended using an extra meta txt file | |
self.paths = paired_paths_from_folder( | |
[self.lq_folder, self.gt_folder], ["lq", "gt"], self.filename_tmpl | |
) | |
def __getitem__(self, index): | |
if self.file_client is None: | |
self.file_client = FileClient( | |
self.io_backend_opt.pop("type"), **self.io_backend_opt | |
) | |
scale = self.opt["scale"] | |
# Load gt and lq images. Dimension order: HWC; channel order: BGR; | |
# image range: [0, 1], float32. | |
gt_path = self.paths[index]["gt_path"] | |
img_bytes = self.file_client.get(gt_path, "gt") | |
img_gt = imfrombytes(img_bytes, float32=True) | |
lq_path = self.paths[index]["lq_path"] | |
img_bytes = self.file_client.get(lq_path, "lq") | |
img_lq = imfrombytes(img_bytes, float32=True) | |
# augmentation for training | |
if self.opt["phase"] == "train": | |
gt_size = self.opt["gt_size"] | |
# random crop | |
img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale, gt_path) | |
# flip, rotation | |
img_gt, img_lq = augment( | |
[img_gt, img_lq], self.opt["use_hflip"], self.opt["use_rot"] | |
) | |
# BGR to RGB, HWC to CHW, numpy to tensor | |
img_gt, img_lq = img2tensor([img_gt, img_lq], bgr2rgb=True, float32=True) | |
# normalize | |
if self.mean is not None or self.std is not None: | |
normalize(img_lq, self.mean, self.std, inplace=True) | |
normalize(img_gt, self.mean, self.std, inplace=True) | |
return {"lq": img_lq, "gt": img_gt, "lq_path": lq_path, "gt_path": gt_path} | |
def __len__(self): | |
return len(self.paths) | |