yangminded's picture
Update app.py
9116a30 verified
import os
import gradio as gr
import requests
import inspect
import pandas as pd
# Setting up Langfuse for telemetry
from langfuse import Langfuse, get_client
#
# your Hugging Face token
os.environ["HF_TOKEN"] = os.getenv("HF_Token")
##langfuse = get_client()
#
#print(os.getenv('LF_Secret'))
#
langfuse = Langfuse(
secret_key=os.getenv("LANGFUSE_SECRET_KEY"),
public_key=os.getenv("LANGFUSE_PUBLIC_KEY"),
host=os.getenv("LANGFUSE_HOST")
)
#
# -- Verify connection
if langfuse.auth_check():
print("Langfuse client is authenticated and ready!")
else:
print("Authentication failed. Please check your credentials and host.")
from openinference.instrumentation.smolagents import SmolagentsInstrumentor
SmolagentsInstrumentor().instrument()
# Importing the Agent stuff
from smolagents import CodeAgent,DuckDuckGoSearchTool,VisitWebpageTool,FinalAnswerTool, InferenceClientModel, PromptTemplates, EMPTY_PROMPT_TEMPLATES
from tools.broadfield_search import BroadfieldWebsearch
import yaml
import time
import jinja2
import json
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
# RUNTIME PARAMS
set_inference_on = True
# Utility functions
def delay_execution(agent):
time.sleep(5)
# Agent stuff starts here
class BasicAgent:
def __init__(self):
# Initialize a VLM for Image understanding
vlmodel = InferenceClientModel(model_id='Qwen/Qwen2.5-VL-72B-Instruct')
# Create the agent
self.vlm_agent = CodeAgent(
tools=[],
model=vlmodel,
additional_authorized_imports=['pandas', 'requests', 'markdownify', 'openpyxl','PIL'],
step_callbacks=[],
max_steps=5,
verbosity_level=2,
name='image_understanding_agent',
description='Gives textual descriptions of images.'
)
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = InferenceClientModel(
model_id='Qwen/Qwen3-235B-A22B', #'Qwen/Qwen3-30B-A3B',
#provider='nebius',
token=os.getenv('HF_Token'))
self.agent = CodeAgent(
model=model,
tools=[FinalAnswerTool(), BroadfieldWebsearch(), VisitWebpageTool()], ## add your tools here (don't remove final answer),
additional_authorized_imports=['pandas', 'requests', 'markdownify', 'openpyxl'],
max_steps=10,
verbosity_level=1,
step_callbacks=[delay_execution],
managed_agents=[self.vlm_agent]
)
print('*$% Original system prompt')
#print(self.agent.prompt_templates['system_prompt'])
# Customize the system prompt for GAIA format.
with open("prompts.yaml", 'r') as stream:
prompts = yaml.safe_load(stream)
print('*$% Customize system prompt')
self.agent.prompt_templates['system_prompt'] = prompts['system_prompt']
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
answer = self.agent.run(question) if set_inference_on else "DEFAULT: INFERENCE IS SET TO INACTIVE."
print(f"Agent returning answer: {answer}")
return answer
def compose_question_for_agent(task_id: str, question_text: str, question_file_name: str) -> str:
# Define the updated Jinja2 template with a conditional block to add information where file attachments can be found.
template_string = "{{ question_text }}{% if question_file_name %}\nThis question refers to a file. You can find the URL of the file by performing a REST API GET request at https://agents-course-unit4-scoring.hf.space/files/{{ task_id }}{% endif %}"
# Create a Jinja2 template object
template = jinja2.Template(template_string)
# Compose the question into a new string.
composed_question = template.render(task_id=task_id, question_text=question_text, question_file_name=question_file_name)
return composed_question
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
question_file_name = item.get("file_name")
composed_question_text = compose_question_for_agent(task_id, question_text, question_file_name)
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(composed_question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)