# HunyuanVideo ## Training For LoRA training, specify `--training_type lora`. For full finetuning, specify `--training_type full-finetune`. ```bash #!/bin/bash export WANDB_MODE="offline" export NCCL_P2P_DISABLE=1 export TORCH_NCCL_ENABLE_MONITORING=0 export FINETRAINERS_LOG_LEVEL=DEBUG GPU_IDS="0,1" DATA_ROOT="/path/to/dataset" CAPTION_COLUMN="prompts.txt" VIDEO_COLUMN="videos.txt" OUTPUT_DIR="/path/to/models/hunyuan-video/" ID_TOKEN="afkx" # Model arguments model_cmd="--model_name hunyuan_video \ --pretrained_model_name_or_path hunyuanvideo-community/HunyuanVideo" # Dataset arguments dataset_cmd="--data_root $DATA_ROOT \ --video_column $VIDEO_COLUMN \ --caption_column $CAPTION_COLUMN \ --id_token $ID_TOKEN \ --video_resolution_buckets 17x512x768 49x512x768 61x512x768 \ --caption_dropout_p 0.05" # Dataloader arguments dataloader_cmd="--dataloader_num_workers 0" # Diffusion arguments diffusion_cmd="" # Training arguments training_cmd="--training_type lora \ --seed 42 \ --batch_size 1 \ --train_steps 500 \ --rank 128 \ --lora_alpha 128 \ --target_modules to_q to_k to_v to_out.0 \ --gradient_accumulation_steps 1 \ --gradient_checkpointing \ --checkpointing_steps 500 \ --checkpointing_limit 2 \ --enable_slicing \ --enable_tiling" # Optimizer arguments optimizer_cmd="--optimizer adamw \ --lr 2e-5 \ --lr_scheduler constant_with_warmup \ --lr_warmup_steps 100 \ --lr_num_cycles 1 \ --beta1 0.9 \ --beta2 0.95 \ --weight_decay 1e-4 \ --epsilon 1e-8 \ --max_grad_norm 1.0" # Miscellaneous arguments miscellaneous_cmd="--tracker_name finetrainers-hunyuan-video \ --output_dir $OUTPUT_DIR \ --nccl_timeout 1800 \ --report_to wandb" cmd="accelerate launch --config_file accelerate_configs/uncompiled_8.yaml --gpu_ids $GPU_IDS train.py \ $model_cmd \ $dataset_cmd \ $dataloader_cmd \ $diffusion_cmd \ $training_cmd \ $optimizer_cmd \ $miscellaneous_cmd" echo "Running command: $cmd" eval $cmd echo -ne "-------------------- Finished executing script --------------------\n\n" ``` ## Memory Usage ### LoRA > [!NOTE] > > The below measurements are done in `torch.bfloat16` precision. Memory usage can further be reduce by passing `--layerwise_upcasting_modules transformer` to the training script. This will cast the model weights to `torch.float8_e4m3fn` or `torch.float8_e5m2`, which halves the memory requirement for model weights. Computation is performed in the dtype set by `--transformer_dtype` (which defaults to `bf16`). LoRA with rank 128, batch size 1, gradient checkpointing, optimizer adamw, `49x512x768` resolutions, **without precomputation**: ``` Training configuration: { "trainable parameters": 163577856, "total samples": 69, "train epochs": 1, "train steps": 10, "batches per device": 1, "total batches observed per epoch": 69, "train batch size": 1, "gradient accumulation steps": 1 } ``` | stage | memory_allocated | max_memory_reserved | |:-----------------------:|:----------------:|:-------------------:| | before training start | 38.889 | 39.020 | | before validation start | 39.747 | 56.266 | | after validation end | 39.748 | 58.385 | | after epoch 1 | 39.748 | 40.910 | | after training end | 25.288 | 40.910 | Note: requires about `59` GB of VRAM when validation is performed. LoRA with rank 128, batch size 1, gradient checkpointing, optimizer adamw, `49x512x768` resolutions, **with precomputation**: ``` Training configuration: { "trainable parameters": 163577856, "total samples": 1, "train epochs": 10, "train steps": 10, "batches per device": 1, "total batches observed per epoch": 1, "train batch size": 1, "gradient accumulation steps": 1 } ``` | stage | memory_allocated | max_memory_reserved | |:-----------------------------:|:----------------:|:-------------------:| | after precomputing conditions | 14.232 | 14.461 | | after precomputing latents | 14.717 | 17.244 | | before training start | 24.195 | 26.039 | | after epoch 1 | 24.83 | 42.387 | | before validation start | 24.842 | 42.387 | | after validation end | 39.558 | 46.947 | | after training end | 24.842 | 41.039 | Note: requires about `47` GB of VRAM with validation. If validation is not performed, the memory usage is reduced to about `42` GB. ### Full finetuning Current, full finetuning is not supported for HunyuanVideo. It goes out of memory (OOM) for `49x512x768` resolutions. ## Inference Assuming your LoRA is saved and pushed to the HF Hub, and named `my-awesome-name/my-awesome-lora`, we can now use the finetuned model for inference: ```py import torch from diffusers import HunyuanVideoPipeline import torch from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel from diffusers.utils import export_to_video model_id = "hunyuanvideo-community/HunyuanVideo" transformer = HunyuanVideoTransformer3DModel.from_pretrained( model_id, subfolder="transformer", torch_dtype=torch.bfloat16 ) pipe = HunyuanVideoPipeline.from_pretrained(model_id, transformer=transformer, torch_dtype=torch.float16) pipe.load_lora_weights("my-awesome-name/my-awesome-lora", adapter_name="hunyuanvideo-lora") pipe.set_adapters(["hunyuanvideo-lora"], [0.6]) pipe.vae.enable_tiling() pipe.to("cuda") output = pipe( prompt="A cat walks on the grass, realistic", height=320, width=512, num_frames=61, num_inference_steps=30, ).frames[0] export_to_video(output, "output.mp4", fps=15) ``` You can refer to the following guides to know more about the model pipeline and performing LoRA inference in `diffusers`: * [Hunyuan-Video in Diffusers](https://huggingface.co/docs/diffusers/main/api/pipelines/hunyuan_video) * [Load LoRAs for inference](https://huggingface.co/docs/diffusers/main/en/tutorials/using_peft_for_inference) * [Merge LoRAs](https://huggingface.co/docs/diffusers/main/en/using-diffusers/merge_loras)