Spaces:
Running
Running
File size: 13,599 Bytes
3e2ffcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
#!/usr/bin/env python3
"""
OnCall.ai System - Latency Chart Generator
==========================================
Generates comprehensive latency analysis charts from saved statistics.
Reads JSON files produced by latency_evaluator.py and creates visualizations.
No LLM calls - pure data visualization.
Author: YanBo Chen
Date: 2025-08-04
"""
import json
import os
import sys
from typing import Dict, List, Any
from datetime import datetime
from pathlib import Path
import glob
# Visualization imports
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
class LatencyChartGenerator:
"""Generate charts from latency evaluation statistics - no LLM dependency"""
def __init__(self):
"""Initialize chart generator"""
print("π Initializing Latency Chart Generator...")
# Set up professional chart style
plt.style.use('default')
sns.set_palette("husl")
print("β
Chart Generator ready")
def load_latest_statistics(self, results_dir: str = None) -> Dict[str, Any]:
"""
Load the most recent latency statistics file
Args:
results_dir: Directory containing statistics files
"""
if results_dir is None:
results_dir = Path(__file__).parent / "results"
# Find latest statistics file
pattern = str(results_dir / "latency_statistics_*.json")
stat_files = glob.glob(pattern)
if not stat_files:
raise FileNotFoundError(f"No latency statistics files found in {results_dir}")
# Get the most recent file
latest_file = max(stat_files, key=os.path.getmtime)
print(f"π Loading statistics from: {latest_file}")
with open(latest_file, 'r', encoding='utf-8') as f:
stats = json.load(f)
return stats
def generate_comprehensive_charts(self, stats: Dict[str, Any]) -> str:
"""
Generate comprehensive 4-category latency analysis charts
Creates professional charts showing:
1. Category comparison bar chart
2. Individual query scatter plot
3. Statistical summary table
4. Performance distribution box plot
"""
try:
# Create figure with subplots
fig, axes = plt.subplots(2, 2, figsize=(16, 12))
fig.suptitle('OnCall.ai Latency Analysis - Category Comparison',
fontsize=16, fontweight='bold')
category_results = stats['category_results']
overall_results = stats['overall_results']
# Chart 1: Category Comparison Bar Chart
ax1 = axes[0, 0]
categories = []
avg_latencies = []
std_devs = []
# Collect category data
for category, cat_stats in category_results.items():
if cat_stats['query_count'] > 0:
categories.append(category.replace('_', ' ').title())
avg_latencies.append(cat_stats['average_latency'])
std_devs.append(cat_stats['std_deviation'])
# Add overall
categories.append('Overall')
avg_latencies.append(overall_results['average_latency'])
std_devs.append(overall_results['std_deviation'])
# Create bar chart with error bars
bars = ax1.bar(categories, avg_latencies, capsize=5, alpha=0.8,
color=['#1f77b4', '#ff7f0e', '#d62728', '#2ca02c'])
ax1.errorbar(categories, avg_latencies, yerr=std_devs, fmt='none',
color='black', capsize=3, capthick=1)
ax1.set_title('Average Latency by Category', fontweight='bold')
ax1.set_ylabel('Latency (seconds)')
ax1.set_xlabel('Query Category')
ax1.grid(True, alpha=0.3)
# Add value labels on bars
for bar, avg, std in zip(bars, avg_latencies, std_devs):
height = bar.get_height()
ax1.text(bar.get_x() + bar.get_width()/2., height + std*0.1,
f'{avg:.1f}s', ha='center', va='bottom', fontweight='bold')
# Add target line
ax1.axhline(y=30.0, color='red', linestyle='--', alpha=0.7, label='30s Target')
ax1.legend()
# Chart 2: Individual Query Performance
ax2 = axes[0, 1]
query_indices = []
latencies = []
colors = []
color_map = {'diagnosis': '#1f77b4', 'treatment': '#ff7f0e', 'mixed': '#d62728'}
query_idx = 0
for category, cat_stats in category_results.items():
for latency in cat_stats['individual_latencies']:
query_indices.append(query_idx)
latencies.append(latency)
colors.append(color_map.get(category, 'gray'))
query_idx += 1
if latencies:
ax2.scatter(query_indices, latencies, c=colors, alpha=0.7, s=100)
ax2.set_title('Individual Query Performance', fontweight='bold')
ax2.set_ylabel('Latency (seconds)')
ax2.set_xlabel('Query Index')
ax2.grid(True, alpha=0.3)
# Add target line
ax2.axhline(y=30.0, color='red', linestyle='--', alpha=0.7, label='30s Target')
# Add category legend
from matplotlib.patches import Patch
legend_elements = [Patch(facecolor=color_map[cat], label=cat.title())
for cat in color_map.keys() if cat in category_results.keys()]
ax2.legend(handles=legend_elements)
else:
ax2.text(0.5, 0.5, 'No latency data available',
ha='center', va='center', transform=ax2.transAxes)
ax2.set_title('Individual Query Performance', fontweight='bold')
# Chart 3: Statistical Summary Table
ax3 = axes[1, 0]
ax3.axis('tight')
ax3.axis('off')
# Create summary table
table_data = []
headers = ['Category', 'Avg (s)', 'Std (s)', 'Min (s)', 'Max (s)', 'Count']
for category, cat_stats in category_results.items():
if cat_stats['query_count'] > 0:
table_data.append([
category.replace('_', ' ').title(),
f"{cat_stats['average_latency']:.2f}",
f"{cat_stats['std_deviation']:.2f}",
f"{cat_stats['min_latency']:.2f}",
f"{cat_stats['max_latency']:.2f}",
str(cat_stats['query_count'])
])
# Add overall row
table_data.append([
'Overall',
f"{overall_results['average_latency']:.2f}",
f"{overall_results['std_deviation']:.2f}",
f"{overall_results['min_latency']:.2f}",
f"{overall_results['max_latency']:.2f}",
str(overall_results['successful_queries'])
])
if table_data:
table = ax3.table(cellText=table_data, colLabels=headers,
cellLoc='center', loc='center',
colWidths=[0.2, 0.15, 0.15, 0.15, 0.15, 0.1])
table.auto_set_font_size(False)
table.set_fontsize(10)
table.scale(1, 2)
# Style the table header
for i in range(len(headers)):
table[(0, i)].set_text_props(weight='bold', color='white')
table[(0, i)].set_facecolor('#2E7D32')
ax3.set_title('Statistical Summary', fontweight='bold', pad=20)
# Chart 4: Performance Distribution
ax4 = axes[1, 1]
# Create box plot if we have multiple data points
box_data = []
box_labels = []
for category, cat_stats in category_results.items():
if cat_stats['individual_latencies'] and len(cat_stats['individual_latencies']) > 0:
box_data.append(cat_stats['individual_latencies'])
box_labels.append(category.replace('_', ' ').title())
if box_data and len(box_data) > 0:
box_plot = ax4.boxplot(box_data, labels=box_labels, patch_artist=True)
# Color the boxes
colors = ['#1f77b4', '#ff7f0e', '#d62728']
for patch, color in zip(box_plot['boxes'], colors[:len(box_plot['boxes'])]):
patch.set_facecolor(color)
patch.set_alpha(0.7)
ax4.set_title('Latency Distribution by Category', fontweight='bold')
ax4.set_ylabel('Latency (seconds)')
ax4.grid(True, alpha=0.3)
# Add target line
ax4.axhline(y=30.0, color='red', linestyle='--', alpha=0.7, label='30s Target')
ax4.legend()
else:
# For single data points, show a simple bar chart
single_categories = []
single_latencies = []
for category, cat_stats in category_results.items():
if cat_stats['query_count'] > 0:
single_categories.append(category.replace('_', ' ').title())
single_latencies.append(cat_stats['average_latency'])
if single_categories:
ax4.bar(single_categories, single_latencies, alpha=0.7,
color=['#1f77b4', '#ff7f0e', '#d62728'][:len(single_categories)])
ax4.set_title('Category Latency (Single Query Each)', fontweight='bold')
ax4.set_ylabel('Latency (seconds)')
ax4.grid(True, alpha=0.3)
ax4.axhline(y=30.0, color='red', linestyle='--', alpha=0.7, label='30s Target')
ax4.legend()
else:
ax4.text(0.5, 0.5, 'No data available for distribution plot',
ha='center', va='center', transform=ax4.transAxes)
ax4.set_title('Latency Distribution', fontweight='bold')
# Adjust layout and save
plt.tight_layout()
# Save chart
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
chart_filename = f"latency_analysis_charts_{timestamp}.png"
# Ensure results directory exists
results_dir = Path(__file__).parent / "results"
results_dir.mkdir(exist_ok=True)
chart_path = results_dir / chart_filename
plt.savefig(chart_path, dpi=300, bbox_inches='tight',
facecolor='white', edgecolor='none')
plt.close()
print(f"π Charts saved to: {chart_path}")
return str(chart_path)
except Exception as e:
print(f"β Chart generation failed: {e}")
return ""
def print_statistics_summary(self, stats: Dict[str, Any]):
"""Print formatted statistics summary to console"""
category_results = stats['category_results']
overall_results = stats['overall_results']
print(f"\nπ === LATENCY ANALYSIS CHART SUMMARY ===")
print(f"Overall Performance:")
print(f" Average Latency: {overall_results['average_latency']:.2f}s (Β±{overall_results['std_deviation']:.2f})")
print(f" Success Rate: {overall_results['successful_queries']}/{overall_results['total_queries']}")
print(f" 30s Target Compliance: {overall_results['target_compliance']:.1%}")
print(f"\nCategory Breakdown:")
for category, cat_stats in category_results.items():
if cat_stats['query_count'] > 0:
print(f" {category.capitalize()}: {cat_stats['average_latency']:.2f}s (Β±{cat_stats['std_deviation']:.2f}) [{cat_stats['query_count']} queries]")
# Independent execution interface
if __name__ == "__main__":
"""Independent chart generation interface"""
print("π OnCall.ai Latency Chart Generator")
# Initialize chart generator
chart_gen = LatencyChartGenerator()
try:
# Load latest statistics
stats = chart_gen.load_latest_statistics()
# Generate charts
chart_path = chart_gen.generate_comprehensive_charts(stats)
# Print summary
chart_gen.print_statistics_summary(stats)
print(f"\nβ
Chart generation complete!")
print(f"π Charts saved to: {chart_path}")
except FileNotFoundError as e:
print(f"β {e}")
print("π‘ Please run latency_evaluator.py first to generate statistics data")
except Exception as e:
print(f"β Chart generation failed: {e}")
|