File size: 9,857 Bytes
16a2990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# Metric 5-6 LLM Judge Evaluator Manual

## Overview

The `metric5_6_llm_judge_evaluator.py` is a multi-system evaluation tool that uses Llama3-70B as a third-party judge to assess medical advice quality across different AI systems. It supports both single-system evaluation and multi-system comparison with a single LLM call for maximum consistency.

## Metrics Evaluated

**Metric 5: Clinical Actionability (θ‡¨εΊŠε―ζ“δ½œζ€§)**
- Scale: 1-10 (normalized to 0.0-1.0)
- Question: "Can healthcare providers immediately act on this advice?"
- Target: β‰₯7.0/10 for acceptable actionability

**Metric 6: Clinical Evidence Quality (θ‡¨εΊŠθ­‰ζ“šε“θ³ͺ)**  
- Scale: 1-10 (normalized to 0.0-1.0)
- Question: "Is the advice evidence-based and follows medical standards?"
- Target: β‰₯7.5/10 for acceptable evidence quality

## System Architecture

### Multi-System Support
The evaluator supports flexible system combinations:
- **Single System**: `rag` or `direct`
- **Two-System Comparison**: `rag,direct` 
- **Future Extension**: `rag,direct,claude,gpt4` (any combination)

### Judge LLM
- **Model**: Llama3-70B-Instruct via Hugging Face API
- **Strategy**: Single batch call for all evaluations
- **Temperature**: 0.1 (low for consistent evaluation)
- **Max Tokens**: 2048 (sufficient for evaluation responses)

## Prerequisites

### 1. Environment Setup
```bash
# Ensure HF_TOKEN is set in your environment
export HF_TOKEN="your_huggingface_token"

# Or add to .env file
echo "HF_TOKEN=your_huggingface_token" >> .env
```

### 2. Required Data Files
Before running the judge evaluator, you must have medical outputs from your systems:

**For RAG System**:
```bash
python latency_evaluator.py single_test_query.txt
# Generates: results/medical_outputs_YYYYMMDD_HHMMSS.json
```

**For Direct LLM System**:
```bash
python direct_llm_evaluator.py single_test_query.txt  
# Generates: results/medical_outputs_direct_YYYYMMDD_HHMMSS.json
```

## Usage

### Command Line Interface

#### Single System Evaluation
```bash
# Evaluate RAG system only
python metric5_6_llm_judge_evaluator.py rag

# Evaluate Direct LLM system only  
python metric5_6_llm_judge_evaluator.py direct
```

#### Multi-System Comparison (Recommended)
```bash
# Compare RAG vs Direct systems
python metric5_6_llm_judge_evaluator.py rag,direct

# Future: Compare multiple systems
python metric5_6_llm_judge_evaluator.py rag,direct,claude
```

### Complete Workflow Example

```bash
# Step 1: Navigate to evaluation directory
cd /path/to/GenAI-OnCallAssistant/evaluation

# Step 2: Generate medical outputs from both systems
python latency_evaluator.py single_test_query.txt
python direct_llm_evaluator.py single_test_query.txt

# Step 3: Run comparative evaluation
python metric5_6_llm_judge_evaluator.py rag,direct
```

## Output Files

### Generated Files
- **Statistics**: `results/judge_evaluation_comparison_rag_vs_direct_YYYYMMDD_HHMMSS.json`
- **Detailed Results**: Stored in evaluator's internal results array

### File Structure
```json
{
  "comparison_metadata": {
    "systems_compared": ["rag", "direct"],
    "comparison_type": "multi_system",
    "timestamp": "2025-08-04T22:00:00"
  },
  "category_results": {
    "diagnosis": {
      "average_actionability": 0.850,
      "average_evidence": 0.780,
      "query_count": 1,
      "actionability_target_met": true,
      "evidence_target_met": true
    }
  },
  "overall_results": {
    "average_actionability": 0.850,
    "average_evidence": 0.780,
    "successful_evaluations": 2,
    "total_queries": 2,
    "actionability_target_met": true,
    "evidence_target_met": true
  }
}
```

## Evaluation Process

### 1. File Discovery
The evaluator automatically finds the latest medical output files:
- **RAG**: `medical_outputs_*.json`
- **Direct**: `medical_outputs_direct_*.json`
- **Custom**: `medical_outputs_{system}_*.json`

### 2. Prompt Generation
For multi-system comparison, the evaluator creates a structured prompt:
```
You are a medical expert evaluating and comparing AI systems...

SYSTEM 1 (RAG): Uses medical guidelines + LLM for evidence-based advice
SYSTEM 2 (Direct): Uses LLM only without external guidelines

QUERY 1 (DIAGNOSIS):
Patient Query: 60-year-old patient with hypertension history...

SYSTEM 1 Response: For a 60-year-old patient with...
SYSTEM 2 Response: Based on the symptoms described...

RESPONSE FORMAT:
Query 1 System 1: Actionability=X, Evidence=Y
Query 1 System 2: Actionability=X, Evidence=Y
```

### 3. LLM Judge Evaluation
- **Single API Call**: All systems evaluated in one request for consistency
- **Response Parsing**: Automatic extraction of numerical scores
- **Error Handling**: Graceful handling of parsing failures

### 4. Results Analysis
- **System-Specific Statistics**: Individual performance metrics
- **Comparative Analysis**: Direct system-to-system comparison
- **Target Compliance**: Automatic threshold checking

## Expected Output

### Console Output Example
```
🧠 OnCall.ai LLM Judge Evaluator - Metrics 5-6 Multi-System Evaluation

πŸ§ͺ Multi-System Comparison: RAG vs DIRECT
πŸ“Š Found rag outputs: results/medical_outputs_20250804_215917.json
πŸ“Š Found direct outputs: results/medical_outputs_direct_20250804_220000.json
πŸ“Š Comparing 2 systems with 1 queries each
🎯 Metrics: 5 (Actionability) + 6 (Evidence Quality)
⚑ Strategy: Single comparison call for maximum consistency

🧠 Multi-system comparison: rag, direct
πŸ“Š Evaluating 1 queries across 2 systems...
πŸ“ Comparison prompt created (2150 characters)
πŸ”„ Calling judge LLM for multi-system comparison...
βœ… Judge LLM completed comparison evaluation in 45.3s
πŸ“„ Response length: 145 characters
πŸ“Š RAG: 1 evaluations parsed
πŸ“Š DIRECT: 1 evaluations parsed

πŸ“Š === LLM JUDGE EVALUATION SUMMARY ===
Systems Compared: RAG vs DIRECT
Overall Performance:
   Average Actionability: 0.850 (8.5/10)
   Average Evidence Quality: 0.780 (7.8/10)
   Actionability Target (β‰₯7.0): βœ… Met
   Evidence Target (β‰₯7.5): βœ… Met

System Breakdown:
   RAG: Actionability=0.900, Evidence=0.850 [1 queries]
   DIRECT: Actionability=0.800, Evidence=0.710 [1 queries]

βœ… LLM judge evaluation complete!
πŸ“Š Statistics: results/judge_evaluation_comparison_rag_vs_direct_20250804_220000.json
⚑ Efficiency: 2 evaluations in 1 LLM call
```

## Key Features

### 1. Scientific Comparison Design
- **Single Judge Call**: All systems evaluated simultaneously for consistency
- **Eliminates Temporal Bias**: Same judge, same context, same standards
- **Direct System Comparison**: Side-by-side evaluation format

### 2. Flexible Architecture  
- **Backward Compatible**: Single system evaluation still supported
- **Future Extensible**: Easy to add new systems (`claude`, `gpt4`, etc.)
- **Modular Design**: Clean separation of concerns

### 3. Robust Error Handling
- **File Validation**: Automatic detection of missing input files
- **Query Count Verification**: Warns if systems have different query counts
- **Graceful Degradation**: Continues operation despite partial failures

### 4. Comprehensive Reporting
- **System-Specific Metrics**: Individual performance analysis
- **Comparative Statistics**: Direct system-to-system comparison
- **Target Compliance**: Automatic benchmark checking
- **Detailed Metadata**: Full traceability of evaluation parameters

## Troubleshooting

### Common Issues

#### 1. Missing Input Files
```
❌ No medical outputs files found for rag system
πŸ’‘ Please run evaluators first:
   python latency_evaluator.py single_test_query.txt
```
**Solution**: Run the prerequisite evaluators to generate medical outputs.

#### 2. HF_TOKEN Not Set
```
❌ HF_TOKEN is missing from environment variables
```
**Solution**: Set your Hugging Face token in environment or `.env` file.

#### 3. Query Count Mismatch
```
⚠️ Warning: Systems have different query counts: {'rag': 3, 'direct': 1}
```
**Solution**: Ensure both systems processed the same input file.

#### 4. LLM API Timeout
```
❌ Multi-system evaluation failed: timeout
```
**Solution**: Check internet connection and Hugging Face API status.

### Debug Tips

1. **Check File Existence**: Verify medical output files in `results/` directory
2. **Validate JSON Format**: Ensure input files are properly formatted
3. **Monitor API Usage**: Check Hugging Face account limits
4. **Review Logs**: Examine detailed logging output for specific errors

## Future Extensions

### Phase 2: Generic Multi-System Framework
```bash
# Configuration-driven system comparison
python metric5_6_llm_judge_evaluator.py --config comparison_config.json
```

### Phase 3: Unlimited System Support
```bash
# Dynamic system registration
python metric5_6_llm_judge_evaluator.py med42,claude,gpt4,palm,llama2
```

### Integration with Chart Generators
```bash
# Generate comparison visualizations
python metric5_6_llm_judge_chart_generator.py rag,direct
```

## Best Practices

1. **Consistent Test Data**: Use the same query file for all systems
2. **Sequential Execution**: Complete data collection before evaluation
3. **Batch Processing**: Use multi-system mode for scientific comparison
4. **Result Verification**: Review detailed statistics files for accuracy
5. **Performance Monitoring**: Track evaluation latency and API costs

## Scientific Validity

The multi-system comparison approach provides superior scientific validity compared to separate evaluations:

- **Eliminates Judge Variability**: Same judge evaluates all systems
- **Reduces Temporal Effects**: All evaluations in single time window  
- **Ensures Consistent Standards**: Identical evaluation criteria applied
- **Enables Direct Comparison**: Side-by-side system assessment
- **Maximizes Efficiency**: Single API call vs multiple separate calls

This design makes the evaluation results more reliable for research publications and system optimization decisions.