File size: 10,273 Bytes
86694c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import argparse

# ParamValue = Tuple[str,float,List[float]]
import os
import os.path
from typing import List

import h5py
import numpy as np
from scipy.io.wavfile import write as write_wav

from generators.parameters import *

"""
This is a base class to derive different kinds of sound generator from (e.g.
custom synthesis, VST plugins)
"""


class SoundGenerator:
    """
    This is now a wrapper round the 'real' generation function
    to handle normalising and saving
    """

    def generate(
        self,
        parameters: dict,
        filename: str,
        length: float,
        sample_rate: int,
        extra: dict,
        normalise: bool = True,
    ) -> np.ndarray:
        audio = self.do_generate(parameters, filename, length, sample_rate, extra)
        if normalise:
            max = np.max(np.absolute(audio))
            if max > 0:
                audio = audio / max
        if not self.creates_wave_file():
            self.write_file(audio, filename, sample_rate)

    def do_generate(
        self,
        parameters: dict,
        filename: str,
        length: float,
        sample_rate: int,
        extra: dict,
    ) -> np.ndarray:
        print(
            "Someone needs to write this method! Generating silence in {} with parameters:{}".format(
                filename, str(parameters)
            )
        )
        return np.zeros(int(length * sample_rate))

    def creates_wave_file(self) -> bool:
        return False

    # Assumes that the data is -1..1 floating point
    def write_file(self, data: np.ndarray, filename: str, sample_rate: int):
        # REVIEW: is this needed?
        # int_data = (data * np.iinfo(np.int16).max).astype(int)
        write_wav(filename, sample_rate, data)


"""
This class runs through a parameter set, gets it to generate parameter settings
then runs the sound generator over it.
"""


class DatasetCreator:
    def __init__(
        self,
        name: str,
        dataset_dir: str,
        wave_file_dir: str,
        parameters: ParameterSet,
        normalise: bool = True,
    ):
        self.name = name
        self.parameters = parameters
        self.dataset_dir = dataset_dir
        self.wave_file_dir = wave_file_dir
        self.normalise = normalise
        os.makedirs(dataset_dir, exist_ok=True)
        os.makedirs(f"{wave_file_dir}/{name}", exist_ok=True)

    def create_parameters(
        self,
        max: int = 2000,
        method: str = "complete",
        extra: dict = {},
        force_create=False,
    ) -> str:
        filename = self.get_dataset_filename("data", "hdf5")
        if os.path.isfile(filename) and not force_create:
            print(
                "Parameter file exists, not recreating (use --regenerate_samples if you want to force)"
            )
            return filename
        print("+" * 40)
        print(f"Generating Dataset {self.name}, {max} examples")
        print(f"Datasets: {self.dataset_dir}")
        print("+" * 40)

        # Save out the parameters first
        self.save_parameters()

        # Generate the set of samples (could switch to generators,
        # but need to figure out arbitrary size arrays in HDF5)
        dataset: List[Sample] = []
        # if method == "complete":
            # dataset = self.parameters.recursively_generate_all()
        # else:
        dataset = self.parameters.sample_space(sample_size=max)

        # Create the data file and add all the points to it
        with h5py.File(filename, "w") as datafile:
            # Figure out the sizes to store
            records = len(dataset)
            param_size = len(dataset[0].encode())

            # Add columns to it
            filenames = datafile.create_dataset(
                "files", (records,), dtype=h5py.string_dtype()
            )
            parameters = datafile.create_dataset(
                "parameters", (records,), dtype=h5py.string_dtype()
            )
            labels = datafile.create_dataset("labels", (records, param_size))
            audio_exists = datafile.create_dataset(
                "audio_exists", (records,), dtype=np.bool_
            )

            # Generate the sample points
            for index, point in enumerate(dataset):
                params = self.parameters.to_settings(point)
                filenames[index] = self.get_wave_filename(index)
                labels[index] = point.encode()
                parameters[index] = json.dumps(params)
                audio_exists[index] = False
                if index % 1000 == 0:
                    print("Generating parameters for example {}".format(index))
            datafile.flush()
        datafile.close()

        return filename

    def generate_audio(
        self,
        sound_generator: SoundGenerator,
        length: float = 1,
        sample_rate: int = 16384,
        extra: dict = {},
        dataset_filename=None,
        force_generate=True,
    ):
        if dataset_filename is None:
            dataset_filename = self.get_dataset_filename("data", "hdf5")

        print("+" * 40)
        print(
            f"Generating Audio for Dataset {self.name} ({dataset_filename}), with {length}s at {sample_rate}/s"
        )
        print(f"Output waves: {self.wave_file_dir}, datasets: {self.dataset_dir}")
        print("+" * 40)

        with h5py.File(dataset_filename, "r+") as datafile:
            for name, value in datafile.items():
                print(f"{name}: {value}")
            # Get the columns
            filenames = datafile.get("files")
            print(filenames)
            parameters = datafile.get("parameters")
            print(parameters)
            audio_exists = datafile.get("audio_exists")
            print(audio_exists)

            for index, filename in enumerate(filenames):
                if (
                    audio_exists[index]
                    and os.path.isfile(filename)
                    and not force_generate
                ):
                    print(f"Audio exists for index {index} ({filename})")
                else:
                    print(f"Generating Audio for index {index} ({filename})")
                    params = json.loads(parameters[index])
                    audio = sound_generator.generate(
                        params,
                        filename,
                        length,
                        sample_rate,
                        extra,
                        normalise=self.normalise,
                    )
                    audio_exists[index] = bool(audio)
                    datafile.flush()
                if index % 1000 == 0:
                    print("Generating example {}".format(index))

    def save_parameters(self):
        self.parameters.save_json(self.get_dataset_filename("params", "json"))
        self.parameters.save(self.get_dataset_filename("params", "pckl"))

    def get_dataset_filename(self, type: str, extension: str = "txt") -> str:
        return f"{self.dataset_dir}/{self.name}_{type}.{extension}"

    def get_wave_filename(self, index: int) -> str:
        return f"{self.wave_file_dir}/{self.name}/{self.name}_{index:05d}.wav"


def default_generator_argparse():
    parser = argparse.ArgumentParser(description="Process some integers.")
    parser.add_argument(
        "--num_examples",
        type=int,
        dest="samples",
        action="store",
        default=20000,
        help="Number of examples to create",
    )
    parser.add_argument(
        "--name",
        type=str,
        dest="name",
        default="InverSynth",
        help="Name of datasets to create",
    )
    parser.add_argument(
        "--dataset_directory",
        type=str,
        dest="data_dir",
        default="test_datasets",
        help="Directory to put datasets",
    )
    parser.add_argument(
        "--wavefile_directory",
        type=str,
        dest="wave_dir",
        default="test_waves",
        help="Directory to put wave files. Will have the dataset name appended automatically",
    )
    parser.add_argument(
        "--length",
        type=float,
        dest="length",
        default=1.0,
        help="Length of each sample in seconds",
    )
    parser.add_argument(
        "--sample_rate",
        type=int,
        dest="sample_rate",
        default=16384,
        help="Sample rate (Samples/second)",
    )
    parser.add_argument(
        "--sampling_method",
        type=str,
        dest="method",
        default="random",
        choices=["random"],
        help="Method to use for generating examples. Currently only random, but may include whole space later",
    )
    parser.add_argument(
        "--regenerate_samples",
        action="store_true",
        help="Regenerate the set of points to explore if it exists (will also force regenerating audio)",
    )
    parser.add_argument(
        "--regenerate_audio",
        action="store_true",
        help="Regenerate audio files if they exists",
    )
    parser.add_argument(
        "--normalise", action="store_true", help="Regenerate audio files if they exists"
    )
    return parser


def generate_examples(
    gen: SoundGenerator, parameters: ParameterSet, args=None, extra={}
):
    if not args:
        parser = default_generator_argparse()
        args = parser.parse_args()

    g = DatasetCreator(
        name=args.name,
        dataset_dir=args.data_dir,
        wave_file_dir=args.wave_dir,
        parameters=parameters,
        normalise=args.normalise,
    )

    g.create_parameters(
        max=args.samples, method=args.method, force_create=True
    )

    g.generate_audio(
        sound_generator=gen,
        length=args.length,
        sample_rate=args.sample_rate,
        extra=extra,
        force_generate=args.regenerate_audio | args.regenerate_samples,
    )


if __name__ == "__main__":
    gen = SoundGenerator()
    parameters = ParameterSet(
        [
            Parameter("p1", [100, 110, 120, 130, 140]),
            Parameter("p2", [200, 220, 240, 260, 280]),
        ]
    )
    g = DatasetCreator(
        "example_generator",
        dataset_dir="test_datasets",
        wave_file_dir="test_waves/example/",
        parameters=parameters,
    )
    g.generate_examples(sound_generator=gen, parameters=parameters)