Spaces:
Sleeping
Sleeping
File size: 10,273 Bytes
86694c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import argparse
# ParamValue = Tuple[str,float,List[float]]
import os
import os.path
from typing import List
import h5py
import numpy as np
from scipy.io.wavfile import write as write_wav
from generators.parameters import *
"""
This is a base class to derive different kinds of sound generator from (e.g.
custom synthesis, VST plugins)
"""
class SoundGenerator:
"""
This is now a wrapper round the 'real' generation function
to handle normalising and saving
"""
def generate(
self,
parameters: dict,
filename: str,
length: float,
sample_rate: int,
extra: dict,
normalise: bool = True,
) -> np.ndarray:
audio = self.do_generate(parameters, filename, length, sample_rate, extra)
if normalise:
max = np.max(np.absolute(audio))
if max > 0:
audio = audio / max
if not self.creates_wave_file():
self.write_file(audio, filename, sample_rate)
def do_generate(
self,
parameters: dict,
filename: str,
length: float,
sample_rate: int,
extra: dict,
) -> np.ndarray:
print(
"Someone needs to write this method! Generating silence in {} with parameters:{}".format(
filename, str(parameters)
)
)
return np.zeros(int(length * sample_rate))
def creates_wave_file(self) -> bool:
return False
# Assumes that the data is -1..1 floating point
def write_file(self, data: np.ndarray, filename: str, sample_rate: int):
# REVIEW: is this needed?
# int_data = (data * np.iinfo(np.int16).max).astype(int)
write_wav(filename, sample_rate, data)
"""
This class runs through a parameter set, gets it to generate parameter settings
then runs the sound generator over it.
"""
class DatasetCreator:
def __init__(
self,
name: str,
dataset_dir: str,
wave_file_dir: str,
parameters: ParameterSet,
normalise: bool = True,
):
self.name = name
self.parameters = parameters
self.dataset_dir = dataset_dir
self.wave_file_dir = wave_file_dir
self.normalise = normalise
os.makedirs(dataset_dir, exist_ok=True)
os.makedirs(f"{wave_file_dir}/{name}", exist_ok=True)
def create_parameters(
self,
max: int = 2000,
method: str = "complete",
extra: dict = {},
force_create=False,
) -> str:
filename = self.get_dataset_filename("data", "hdf5")
if os.path.isfile(filename) and not force_create:
print(
"Parameter file exists, not recreating (use --regenerate_samples if you want to force)"
)
return filename
print("+" * 40)
print(f"Generating Dataset {self.name}, {max} examples")
print(f"Datasets: {self.dataset_dir}")
print("+" * 40)
# Save out the parameters first
self.save_parameters()
# Generate the set of samples (could switch to generators,
# but need to figure out arbitrary size arrays in HDF5)
dataset: List[Sample] = []
# if method == "complete":
# dataset = self.parameters.recursively_generate_all()
# else:
dataset = self.parameters.sample_space(sample_size=max)
# Create the data file and add all the points to it
with h5py.File(filename, "w") as datafile:
# Figure out the sizes to store
records = len(dataset)
param_size = len(dataset[0].encode())
# Add columns to it
filenames = datafile.create_dataset(
"files", (records,), dtype=h5py.string_dtype()
)
parameters = datafile.create_dataset(
"parameters", (records,), dtype=h5py.string_dtype()
)
labels = datafile.create_dataset("labels", (records, param_size))
audio_exists = datafile.create_dataset(
"audio_exists", (records,), dtype=np.bool_
)
# Generate the sample points
for index, point in enumerate(dataset):
params = self.parameters.to_settings(point)
filenames[index] = self.get_wave_filename(index)
labels[index] = point.encode()
parameters[index] = json.dumps(params)
audio_exists[index] = False
if index % 1000 == 0:
print("Generating parameters for example {}".format(index))
datafile.flush()
datafile.close()
return filename
def generate_audio(
self,
sound_generator: SoundGenerator,
length: float = 1,
sample_rate: int = 16384,
extra: dict = {},
dataset_filename=None,
force_generate=True,
):
if dataset_filename is None:
dataset_filename = self.get_dataset_filename("data", "hdf5")
print("+" * 40)
print(
f"Generating Audio for Dataset {self.name} ({dataset_filename}), with {length}s at {sample_rate}/s"
)
print(f"Output waves: {self.wave_file_dir}, datasets: {self.dataset_dir}")
print("+" * 40)
with h5py.File(dataset_filename, "r+") as datafile:
for name, value in datafile.items():
print(f"{name}: {value}")
# Get the columns
filenames = datafile.get("files")
print(filenames)
parameters = datafile.get("parameters")
print(parameters)
audio_exists = datafile.get("audio_exists")
print(audio_exists)
for index, filename in enumerate(filenames):
if (
audio_exists[index]
and os.path.isfile(filename)
and not force_generate
):
print(f"Audio exists for index {index} ({filename})")
else:
print(f"Generating Audio for index {index} ({filename})")
params = json.loads(parameters[index])
audio = sound_generator.generate(
params,
filename,
length,
sample_rate,
extra,
normalise=self.normalise,
)
audio_exists[index] = bool(audio)
datafile.flush()
if index % 1000 == 0:
print("Generating example {}".format(index))
def save_parameters(self):
self.parameters.save_json(self.get_dataset_filename("params", "json"))
self.parameters.save(self.get_dataset_filename("params", "pckl"))
def get_dataset_filename(self, type: str, extension: str = "txt") -> str:
return f"{self.dataset_dir}/{self.name}_{type}.{extension}"
def get_wave_filename(self, index: int) -> str:
return f"{self.wave_file_dir}/{self.name}/{self.name}_{index:05d}.wav"
def default_generator_argparse():
parser = argparse.ArgumentParser(description="Process some integers.")
parser.add_argument(
"--num_examples",
type=int,
dest="samples",
action="store",
default=20000,
help="Number of examples to create",
)
parser.add_argument(
"--name",
type=str,
dest="name",
default="InverSynth",
help="Name of datasets to create",
)
parser.add_argument(
"--dataset_directory",
type=str,
dest="data_dir",
default="test_datasets",
help="Directory to put datasets",
)
parser.add_argument(
"--wavefile_directory",
type=str,
dest="wave_dir",
default="test_waves",
help="Directory to put wave files. Will have the dataset name appended automatically",
)
parser.add_argument(
"--length",
type=float,
dest="length",
default=1.0,
help="Length of each sample in seconds",
)
parser.add_argument(
"--sample_rate",
type=int,
dest="sample_rate",
default=16384,
help="Sample rate (Samples/second)",
)
parser.add_argument(
"--sampling_method",
type=str,
dest="method",
default="random",
choices=["random"],
help="Method to use for generating examples. Currently only random, but may include whole space later",
)
parser.add_argument(
"--regenerate_samples",
action="store_true",
help="Regenerate the set of points to explore if it exists (will also force regenerating audio)",
)
parser.add_argument(
"--regenerate_audio",
action="store_true",
help="Regenerate audio files if they exists",
)
parser.add_argument(
"--normalise", action="store_true", help="Regenerate audio files if they exists"
)
return parser
def generate_examples(
gen: SoundGenerator, parameters: ParameterSet, args=None, extra={}
):
if not args:
parser = default_generator_argparse()
args = parser.parse_args()
g = DatasetCreator(
name=args.name,
dataset_dir=args.data_dir,
wave_file_dir=args.wave_dir,
parameters=parameters,
normalise=args.normalise,
)
g.create_parameters(
max=args.samples, method=args.method, force_create=True
)
g.generate_audio(
sound_generator=gen,
length=args.length,
sample_rate=args.sample_rate,
extra=extra,
force_generate=args.regenerate_audio | args.regenerate_samples,
)
if __name__ == "__main__":
gen = SoundGenerator()
parameters = ParameterSet(
[
Parameter("p1", [100, 110, 120, 130, 140]),
Parameter("p2", [200, 220, 240, 260, 280]),
]
)
g = DatasetCreator(
"example_generator",
dataset_dir="test_datasets",
wave_file_dir="test_waves/example/",
parameters=parameters,
)
g.generate_examples(sound_generator=gen, parameters=parameters)
|