Spaces:
Sleeping
Sleeping
File size: 5,750 Bytes
86694c3 d909077 86694c3 d909077 86694c3 d909077 86694c3 d909077 86694c3 56a1afa 86694c3 22d5503 86694c3 d909077 86694c3 d909077 86694c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
from contextlib import asynccontextmanager
import uuid
from dotenv import load_dotenv
from fastapi import Depends, FastAPI, File, HTTPException, UploadFile
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
import os
from starlette.exceptions import HTTPException as StarletteHTTPException
from fastapi.middleware.cors import CORSMiddleware
import pathlib
from contextlib import asynccontextmanager
from glob import glob
import os
from models.launch import inference, train_model
from models.spectrogram_cnn import get_model
# distinguish model type for reshaping
load_dotenv()
SERVER = str(os.environ.get('API_URL'))
path = os.path.dirname(os.path.realpath(__file__))
tempFolderPath = os.path.join(path, "temp")
if not os.path.exists(tempFolderPath):
os.makedirs(tempFolderPath)
def load_model_and_parameters():
setup = {
"model_name": "C6XL",
"dataset_name": "InverSynth",
"epochs": 1,
"dataset_dir": "test_datasets",
"output_dir": "output",
"dataset_file": None,
"parameters_file": None,
"data_format": "channels_last",
"run_name": None,
"resume": True,
}
setup["model_type"] = "STFT"
try:
# charger model
model, parameters_file = train_model(model_callback=get_model, **setup)
except Exception as e:
print(f"Couldn't load model: {e}")
return None, None
return model, parameters_file
@asynccontextmanager
async def lifespan(app: FastAPI):
# Remove all files in the temp folder
tempFolderPath = os.path.join(path, "temp")
if os.path.exists(tempFolderPath):
for file_name in os.listdir(tempFolderPath):
file_path = os.path.join(tempFolderPath, file_name)
try:
if os.path.isfile(file_path):
os.remove(file_path)
except Exception as e:
print(f"Error deleting file {file_path}: {e}")
if not os.path.exists(tempFolderPath):
os.makedirs(tempFolderPath)
yield
app = FastAPI(lifespan=lifespan)
str_p = str(path)
class SPAStaticFiles(StaticFiles):
async def get_response(self, path: str, scope):
try:
return await super().get_response(path, scope)
except (HTTPException, StarletteHTTPException) as ex:
if ex.status_code == 404:
return await super().get_response("index.html", scope)
else:
raise ex
@app.get("/download/{file_id}")
async def generate_audio(file_id: str):
try:
# Use glob to find files starting with the specified ID
matching_files = glob(f"temp/{file_id}*")
if not matching_files:
# Handle the case when no matching file is found
print(f"No file found for file ID {file_id}")
raise HTTPException(status_code=404, detail="File not found")
# Assuming you want to copy the first matching file
else:
source_file_path = matching_files[0]
# Check if the file exists
# You can perform additional processing or send the file directly
return JSONResponse(content={"url": f"{source_file_path}"})
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
def is_valid_audio(file_extension):
# Define a list of valid audio file extensions
valid_audio_extensions = [".mp3", ".wav", ".ogg", ".flac", ".m4a"]
# Check if the provided file extension is in the list of valid audio extensions
return file_extension.lower() in valid_audio_extensions
@app.post("/upload/")
async def upload_audio_file(file: UploadFile = File(...)):
try:
model, parameters_file = load_model_and_parameters()
except:
raise("Couldn't load model")
try:
# Create a unique identifier for the uploaded file
file_id = str(uuid.uuid4())
# Extract the original file extension
_, file_extension = os.path.splitext(file.filename)
# Check if the file has a valid audio extension
if not is_valid_audio(file_extension):
raise HTTPException(status_code=400, detail="Invalid audio file format")
# Construct the file paths with the original file extension
file_path = os.path.join("temp", file_id + file_extension)
with open(file_path, "wb") as audio_file:
audio_file.write(file.file.read())
# generate_output_audio(file_path, output_file_path)
output = await start_inference(model=model, parameters_file=parameters_file, file_id=file_id, file_extension=file_extension)
# Send a confirmation with the identifier
print(SERVER+output[0])
return {"file_path": SERVER+output[0], "csv_path": SERVER+output[1], "output_file_path": SERVER+output[2]}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
async def start_inference(model, parameters_file, file_id: str, file_extension : str):
file_path = os.path.join("temp", file_id + file_extension)
output = inference(model=model, parameters_file=parameters_file, file_path=file_path, file_id=file_id)
return output
origins = ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=origins,
allow_headers=origins,
)
app.mount(
"/temp", StaticFiles(directory="temp", check_dir=True, html=True), name="temp"
)
app.mount(
"/",
SPAStaticFiles(directory=f"{pathlib.PurePath(str_p).parent}/front/dist", html=True),
name="dist",
)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|