Spaces:
Sleeping
Sleeping
File size: 22,277 Bytes
86694c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 |
import datetime
import json
import logging
import os
from pickle import load
from typing import Callable, List
import librosa
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from keras import backend as K
from keras.callbacks import CSVLogger
from kapre.time_frequency import Spectrogram
from models.importer_audio import audio_importer
import dawdreamer as daw
from scipy.io import wavfile
import librosa
from generators.parameters import ParameterSet, ParamValue
from models.common.data_generator import SoundDataGenerator
weight_var = K.variable(0.)
class Weight_trans(keras.callbacks.Callback):
def __init__(self, weight_var, transition, epochs):
self.alpha = weight_var
self.transition = transition
self.epochs = epochs
def on_epoch_end(self, epoch, logs={}):
if epoch > 680:
if self.transition == "linear":
K.set_value(self.alpha, ((epoch)/(self.epochs) - 0.617)*0.00001)
tf.print(f"new weight {weight_var.numpy()}")
if self.transition == "linear2":
K.set_value(self.alpha, (1.5625*epoch - 1.0625)*0.00001)
tf.print(f"new weight {weight_var.numpy()}")
if self.transition == "log":
K.set_value(self.alpha, (1- (tf.math.log(epoch*0.001 - 0.67285)/tf.math.log(0.0005)) - 0.35)*0.00001)
tf.print("log")
if self.transition == "log2":
K.set_value(self.alpha, (1- (tf.math.log(epoch*0.001 - 0.6575)/tf.math.log(0.0005)) - 0.5)*0.00001)
tf.print("log")
if self.transition == "log3":
K.set_value(self.alpha, (1- (tf.math.log(epoch*0.001 - 0.67978)/tf.math.log(0.00000005)) - 0.5)*0.00001)
tf.print("log")
if self.transition == "square":
K.set_value(self.alpha, 4.1*tf.pow(epoch*0.001 - 0.65, 2) + 0.002)
print("exp")
if self.transition == "quad":
K.set_value(self.alpha, 33*tf.pow(epoch*0.001 - 0.65, 4) + 0.002)
print("quad")
def train_val_split(
x_train: np.ndarray, y_train: np.ndarray, split: float = 0.2,
) -> tuple:
slice: int = int(x_train.shape[0] * split)
x_val: np.ndarray = x_train[-slice:]
y_val: np.ndarray = y_train[-slice:]
x_train = x_train[:-slice]
y_train = y_train[:-slice]
return (x_val, y_val, x_train, y_train)
"""Model Utils"""
def mean_percentile_rank(y_true, y_pred, k=5):
"""
@paper
The first evaluation measure is the Mean Percentile Rank
(MPR) which is computed per synthesizer parameter.
"""
# TODO
def top_k_mean_accuracy(y_true, y_pred, k=5):
"""
@ paper
The top-k mean accuracy is obtained by computing the top-k
accuracy for each test example and then taking the mean across
all examples. In the same manner as done in the MPR analysis,
we compute the top-k mean accuracy per synthesizer
parameter for π = 1, ... ,5.
"""
# TODO: per parameter?
original_shape = tf.shape(y_true)
y_true = tf.reshape(y_true, (-1, tf.shape(y_true)[-1]))
y_pred = tf.reshape(y_pred, (-1, tf.shape(y_pred)[-1]))
top_k = K.in_top_k(y_pred, tf.cast(tf.argmax(y_true, axis=-1), "int32"), k)
correct_pred = tf.reshape(top_k, original_shape[:-1])
return tf.reduce_mean(tf.cast(correct_pred, tf.float32))
@tf.function
def CustomLoss(y_true, y_pred):
bce = tf.keras.losses.BinaryCrossentropy()
weights = custom_spectral_loss(y_true, y_pred)
weight_shift = (1-weight_var.numpy())+(weight_var.numpy()*weights.numpy())
# tf.print(f"New weight is {weight_shift}")
loss = bce(y_true, y_pred, sample_weight=weight_shift)
return loss
@tf.function
def custom_spectral_loss(y_true, y_pred):
# tf.print("After compiling model :",tf.executing_eagerly())
y_true = tf.reshape(y_true, (-1, tf.shape(y_true)[-1]))
y_pred = tf.reshape(y_pred, (-1, tf.shape(y_pred)[-1]))
# Assuming y_true and y_pred contain parameters for audio synthesis
# Extract parameters from y_true and y_pred
with open("test_datasets/InverSynth_params.pckl", "rb") as f:
parameters: ParameterSet = load(f)
predlist_true: List[ParamValue] = parameters.decode(y_true[0])
predlist_pred: List[ParamValue] = parameters.decode(y_pred[0])
# Convert parameter lists to DataFrames
# Generate audio from parameters
audio_true, penalty = generate_audio(predlist_true)
audio_pred, penalty = generate_audio(predlist_pred)
# Compute spectrogram
if SPECTRO_TYPE == 'spectro':
spectrogram_true = tf.math.abs(tf.signal.stft(audio_true, frame_length=1024, frame_step=512))
spectrogram_pred = tf.math.abs(tf.signal.stft(audio_pred, frame_length=1024, frame_step=512))
elif SPECTRO_TYPE == 'qtrans':
spectrogram_true = librosa.amplitude_to_db(librosa.cqt(audio_true, sr=SAMPLE_RATE, hop_length=128), ref=np.max)
spectrogram_pred = librosa.amplitude_to_db(librosa.cqt(audio_pred, sr=SAMPLE_RATE, hop_length=128), ref=np.max)
elif SPECTRO_TYPE == 'mel':
mel_spect = librosa.feature.melspectrogram(audio_true, sr=SAMPLE_RATE, n_fft=2048, hop_length=1024)
spectrogram_true = librosa.power_to_db(mel_spect, ref=np.max)
mel_spect = librosa.feature.melspectrogram(audio_pred, sr=SAMPLE_RATE, n_fft=2048, hop_length=1024)
spectrogram_pred = librosa.power_to_db(mel_spect, ref=np.max)
#L1 LOSS
if LOSS_TYPE == 'L1':
spectral_loss = penalty*tf.reduce_mean(tf.abs(spectrogram_true-spectrogram_pred))
#L2 LOSS
elif LOSS_TYPE =='L2':
spectral_loss = penalty*tf.reduce_mean((spectrogram_true - spectrogram_pred)**2)
#COSINE LOSS
elif LOSS_TYPE == 'COSINE':
spectral_loss = tf.losses.cosine_distance(spectrogram_true, spectrogram_pred, weights=1.0, axis=-1)
return spectral_loss
def summarize_compile(model: keras.Model):
model.summary(line_length=80, positions=[0.33, 0.65, 0.8, 1.0], show_trainable=True, expand_nested=True)
# Specify the training configuration (optimizer, loss, metrics)
model.compile(
optimizer=keras.optimizers.Adam(), # Optimizer- Adam [14] optimizer
# Loss function to minimize
# @paper: Therefore, we converged on using sigmoid activations with binary cross entropy loss.
# loss=keras.losses.BinaryCrossentropy(),
loss=CustomLoss,
# List of metrics to monitor
metrics=[
# @paper: 1) Mean Percentile Rank?
# mean_percentile_rank,
# @paper: 2) Top-k mean accuracy based evaluation
top_k_mean_accuracy,
custom_spectral_loss,
# Extra Adding 3) spectroloss accuracy
# Extra Adding 4) combined
# @paper: 5) Mean Absolute Error based evaluation
keras.metrics.MeanAbsoluteError(),
],
)
def fit(
model: keras.Model,
x_train: np.ndarray,
y_train: np.ndarray,
x_val: np.ndarray,
y_val: np.ndarray,
batch_size: int = 16,
epochs: int = 200,
) -> keras.Model:
# @paper:
# with a minibatch size of 16 for
# 100 epochs. The best weights for each model were set by
# employing an early stopping procedure.
logging.info("# Fit model on training data")
history = model.fit(
x_train,
y_train,
batch_size=batch_size,
epochs=epochs,
# @paper:
# Early stopping procedure:
# We pass some validation for
# monitoring validation loss and metrics
# at the end of each epoch
validation_data=(x_val, y_val),
verbose=0,
)
# The returned "history" object holds a record
# of the loss values and metric values during training
logging.info("\nhistory dict:", history.history)
return model
def compare(target, prediction, params, precision=1, print_output=False):
if print_output and len(prediction) < 10:
print(prediction)
print("Pred: {}".format(np.round(prediction, decimals=2)))
print("PRnd: {}".format(np.round(prediction)))
print("Act : {}".format(target))
print("+" * 5)
pred: List[ParamValue] = params.decode(prediction)
act: List[ParamValue] = params.decode(target)
pred_index: List[int] = [np.array(p.encoding).argmax() for p in pred]
act_index: List[int] = [np.array(p.encoding).argmax() for p in act]
width = 8
names = "Parameter: "
act_s = "Actual: "
pred_s = "Predicted: "
pred_i = "Pred. Indx:"
act_i = "Act. Index:"
diff_i = "Index Diff:"
for p in act:
names += p.name.rjust(width)[:width]
act_s += f"{p.value:>8.2f}"
for p in pred:
pred_s += f"{p.value:>8.2f}"
for p in pred_index:
pred_i += f"{p:>8}"
for p in act_index:
act_i += f"{p:>8}"
for i in range(len(act_index)):
diff = pred_index[i] - act_index[i]
diff_i += f"{diff:>8}"
exact = 0.0
close = 0.0
n_params = len(pred_index)
for i in range(n_params):
if pred_index[i] == act_index[i]:
exact = exact + 1.0
if abs(pred_index[i] - act_index[i]) <= precision:
close = close + 1.0
exact_ratio = exact / n_params
close_ratio = close / n_params
if print_output:
print(names)
print(act_s)
print(pred_s)
print(act_i)
print(pred_i)
print(diff_i)
print("-" * 30)
return exact_ratio, close_ratio
def evaluate(
prediction: np.ndarray, x: np.ndarray, y: np.ndarray, params: ParameterSet,
):
print("Prediction Shape: {}".format(prediction.shape))
num: int = x.shape[0]
correct: int = 0
correct_r: float = 0.0
close_r: float = 0.0
for i in range(num):
should_print = i < 5
exact, close = compare(
target=y[i],
prediction=prediction[i],
params=params,
print_output=should_print,
)
if exact == 1.0:
correct = correct + 1
correct_r += exact
close_r += close
summary = params.explain()
print(
"{} Parameters with {} levels (fixed: {})".format(
summary["n_variable"], summary["levels"], summary["n_fixed"]
)
)
print(
"Got {} out of {} ({:.1f}% perfect); Exact params: {:.1f}%, Close params: {:.1f}%".format(
correct,
num,
correct / num * 100,
correct_r / num * 100,
close_r / num * 100,
)
)
def data_format_audio(audio: np.ndarray, data_format: str) -> np.ndarray:
# `(None, n_channel, n_freq, n_time)` if `'channels_first'`,
# `(None, n_freq, n_time, n_channel)` if `'channels_last'`,
if data_format == "channels_last":
audio = audio[np.newaxis, :, np.newaxis]
else:
audio = audio[np.newaxis, np.newaxis, :]
return audio
"""
Wrap up the whole training process in a standard function. Gets a callback
to actually make the model, to keep it as flexible as possible.
# Params:
# - dataset_name (dataset name)
# - model_name: (C1..C6,e2e)
# - model_callback: function taking name,inputs,outputs,data_format and returning a Keras model
# - epochs: int
# - dataset_dir: place to find input data
# - output_dir: place to put outputs
# - parameters_file (override parameters filename)
# - dataset_file (override dataset filename)
# - data_format (channels_first or channels_last)
# - run_name: to save this run as
"""
#LOSS TYPE FOR CUSTOM LOSS FUNCTION
LOSS_TYPE = 'L1'
SPECTRO_TYPE = 'spectro'
PRINT = 1
#DAWDREAMER EXPORT SETTINGS
SAMPLE_RATE = 16384
BUFFER_SIZE = 1024
SYNTH_PLUGIN = "libTAL-NoiseMaker.so"
ENGINE = daw.RenderEngine(SAMPLE_RATE, BUFFER_SIZE)
SYNTH = ENGINE.make_plugin_processor("my_synth", SYNTH_PLUGIN)
SYNTH.add_midi_note(40, 127, 0, 0.8)
with open('plugin_config/TAL-NoiseMaker-config.json') as f:
data = json.load(f)
dico=[]
# Extract the key ID from the JSON data
key_id = data['parameters']
for param in key_id:
dico.append(param['id'])
DICO=dico
def train_model(
# Main options
dataset_name: str,
model_name: str,
epochs: int,
model_callback: Callable[[str, int, int, str], keras.Model],
dataset_dir: str,
output_dir: str, # Directory names
dataset_file: str = None,
parameters_file: str = None,
run_name: str = None,
data_format: str = "channels_last",
save_best: bool = True,
resume: bool = False,
checkpoint: bool = True,
model_type: str = "STFT",
):
tf.config.run_functions_eagerly(True)
# tf.data.experimental.enable_debug_mode()
time_generated = datetime.datetime.now().strftime('%Y%m%d-%H%M%S')
if not dataset_file:
dataset_file = (
os.getcwd() + "/" + dataset_dir + "/" + dataset_name + "_data.hdf5"
)
if not parameters_file:
parameters_file = (
os.getcwd() + "/" + dataset_dir + "/" + dataset_name + "_params.pckl"
)
if not run_name:
run_name = dataset_name + "_" + model_name
model_file = f"{output_dir}/model/{run_name}_{time_generated}"
if not os.path.exists(model_file):
os.makedirs(model_file)
best_model_file = f"{output_dir}/best_checkpoint/{run_name}_best_{time_generated}"
if not os.path.exists(best_model_file):
os.makedirs(best_model_file)
if resume:
# checkpoint_model_file = f"{output_dir}/{run_name}_checkpoint_{datetime.datetime.now().strftime('%Y%m%d-%H%M%S')}"
# history_file = f"{output_dir}/{run_name}_{datetime.datetime.now().strftime('%Y%m%d-%H%M%S')}"
checkpoint_model_file = f"{output_dir}/history/InverSynth_C6XL_checkpoint_20231201-103344"
history_file = f"{output_dir}/checkpoints/InverSynth_C6XL_20231201-103344"
else:
os.makedirs(f"{output_dir}/history", exist_ok=True)
os.makedirs(f"{output_dir}/checkpoints", exist_ok=True)
history_file = f"{output_dir}/history/{run_name}_{time_generated}"
checkpoint_model_file = f"{output_dir}/checkpoints/{run_name}_checkpoint_{time_generated}"
history_graph_file = f"{output_dir}/{run_name}.pdf"
print(tf.config.list_physical_devices('GPU'))
gpu_avail = len(tf.config.list_physical_devices('GPU')) # True/False
cuda_gpu_avail = len(tf.config.list_physical_devices('GPU')) # True/False
print("+" * 30)
print(f"++ {run_name}")
print(
f"Running model: {model_name} on dataset {dataset_file} (parameters {parameters_file}) for {epochs} epochs"
)
print(f"Saving model in {output_dir} as {model_file}")
print(f"Saving history as {history_file}")
print(f"GPU: {gpu_avail}, with CUDA: {cuda_gpu_avail}")
print("+" * 30)
os.makedirs(output_dir, exist_ok=True)
# Get training and validation generators
params = {"data_file": dataset_file, "batch_size": 64, "shuffle": True}
training_generator = SoundDataGenerator(first=0.8, **params)
validation_generator = SoundDataGenerator(last=0.2, **params)
n_samples = training_generator.get_audio_length()
print(f"get_audio_length: {n_samples}")
n_outputs = training_generator.get_label_size()
# set keras image_data_format
# NOTE: on CPU only `channels_last` is supported
physical_devices = tf.config.list_physical_devices('GPU')
keras.backend.set_image_data_format(data_format)
model: keras.Model = None
if resume and os.path.exists(checkpoint_model_file):
history = pd.read_csv(history_file)
# Note - its zero indexed in the file, but 1 indexed in the display
initial_epoch: int = max(history.iloc[:, 0]) + 1
# epochs:int = initial_epoch
print(
f"Resuming from model file: {checkpoint_model_file} after epoch {initial_epoch}"
)
model = keras.models.load_model(
checkpoint_model_file
,
custom_objects={"top_k_mean_accuracy": top_k_mean_accuracy, "Spectrogram" : Spectrogram,
"custom_spectral_loss": custom_spectral_loss, "CustomLoss": CustomLoss
},
)
else:
model = model_callback(
model_name=model_name,
inputs=n_samples,
outputs=n_outputs,
data_format=data_format,
)
# keras.utils.plot_model(model, to_file='model.png', show_shapes=True, show_layer_activations=True)
# Summarize and compile the model
summarize_compile(model)
initial_epoch = 0
open(history_file, "w").close()
callbacks = []
best_callback = keras.callbacks.ModelCheckpoint(
filepath=best_model_file,
save_weights_only=False,
save_best_only=True,
verbose=1,
)
checkpoint_callback = keras.callbacks.ModelCheckpoint(
filepath=checkpoint_model_file,
save_weights_only=False,
save_best_only=False,
verbose=1,
)
os.makedirs(f"{output_dir}/logs", exist_ok=True)
log_dir = f"{output_dir}/logs/" + time_generated
tensorboard_callback = keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1, write_graph=True, write_images=True, profile_batch = '500,520')
if save_best:
callbacks.append(best_callback)
if checkpoint:
callbacks.append(checkpoint_callback)
callbacks.append(tensorboard_callback)
callbacks.append(CSVLogger(history_file, append=True))
callbacks.append(Weight_trans(weight_var, "log3" ,epochs))
# Parameter data - needed for decoding!
# Fit the model
history = None
try:
history = model.fit(
x=training_generator,
validation_data=validation_generator,
epochs=epochs,
callbacks=callbacks,
initial_epoch=initial_epoch,
verbose=1, # https://github.com/tensorflow/tensorflow/issues/38064
)
except Exception as e:
print(f"Something went wrong during `model.fit`: {e}")
# Save model
model.save(model_file)
# Save history
if history and not resume:
try:
hist_df = pd.DataFrame(history.history)
try:
fig = hist_df.plot(subplots=True, figsize=(8, 25))
fig[0].get_figure().savefig(history_graph_file)
except Exception as e:
print("Couldn't create history graph")
print(e)
except Exception as e:
tf.print("Couldn't save history")
print(e)
# evaluate prediction on random sample from validation set
# Parameter data - needed for decoding!
with open(parameters_file, "rb") as f:
parameters: ParameterSet = load(f)
# Shuffle data
validation_generator.on_epoch_end()
X, y = validation_generator.__getitem__(0)
X.reshape((X.__len__(), 1, 16384))
# if model_type == "STFT":
# # stft expects shape (channel, sample_rate)
# X = np.moveaxis(X, 1, -1)
prediction: np.ndarray = model.predict(X)
evaluate(prediction, X, y, parameters)
print("++++" * 5)
print("Pushing to trained model")
print("++++" * 5)
Valid=False
while Valid==False:
file = namefile = input("Enter .wav test file path: ")
if os.path.exists(file):
Valid=True
else:
print("File Path invalid, try again ")
newpred = model.predict(audio_importer(str(f'{namefile}')))
predlist: List[ParamValue] = parameters.decode(newpred[0])
df = pd.DataFrame(predlist)
print(df)
df = df.drop(['encoding'], axis=1)
# saving the dataframe
if not os.path.exists(str(f'output/wav_inferred')):
os.makedirs(str(f'output/wav_inferred'))
head, tail = os.path.split(str(f'{namefile}'))
print("Outputting CSV config in " + str(f'output/wav_inferred'))
df.to_csv(str(f'output/wav_inferred/{tail}.csv'))
#export(prediction, X, y, parameters)
# Loop through the rows of the DataFrame
i = 0
for values in df['value'].values:
# Set parameters using DataFrame values
SYNTH.set_parameter(DICO[i],values)
# (MIDI note, velocity, start, duration)
i += 1
#Setting volume to 0.9
SYNTH.set_parameter(1, 0.9)
# Set up the processing graph
graph = [
# synth takes no inputs, so we give an empty list.
(SYNTH, []),
]
ENGINE.load_graph(graph)
ENGINE.render(1)
data = ENGINE.get_audio()
try:
data = librosa.to_mono(data).transpose()
except:
tf.print("ERROR" * 100)
df = df.fillna(0)
data = df.to_numpy()
data = librosa.to_mono(data).transpose()
tf.print("crashed, nan in generation")
synth_params = dict(SYNTH.get_patch())
print(synth_params)
df = pd.DataFrame(data)
# penalty=1000000
# df = pd.DataFrame(data)
# df = df.fillna(0)
# data = df.to_numpy()
wavfile.write(str(f'output/wav_inferred/gen_{tail}.wav'), SAMPLE_RATE, data)
def generate_audio(df_params):
# Loop through the rows of the DataFrame
i = 0
penalty=1
for param in df_params:
# Set parameters using DataFrame values
SYNTH.set_parameter(DICO[i], param.value)
# (MIDI note, velocity, start, duration)
i += 1
# Set up the processing graph
graph = [
# synth takes no inputs, so we give an empty list.
(SYNTH, []),
]
ENGINE.load_graph(graph)
ENGINE.render(1)
data = ENGINE.get_audio()
if np.isnan(data).any():
# df = pd.DataFrame(data)
# df = df.fillna(0)
# data = df.to_numpy()
tf.print("crashed, nan in generation")
synth_params = dict(SYNTH.get_patch())
print(synth_params)
try:
data = librosa.to_mono(data).transpose()
if(librosa.util.valid_audio(data)):
result = np.array(data)
return result, penalty
except:
tf.print("crashed, nan in generation")
raise("Nan in generation, crashed")
|