File size: 22,277 Bytes
86694c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
import datetime
import json
import logging
import os
from pickle import load
from typing import Callable, List
import librosa
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from keras import backend as K
from keras.callbacks import CSVLogger
from kapre.time_frequency import Spectrogram
from models.importer_audio import audio_importer
import dawdreamer as daw
from scipy.io import wavfile
import librosa


from generators.parameters import ParameterSet, ParamValue
from models.common.data_generator import SoundDataGenerator


weight_var = K.variable(0.)

class Weight_trans(keras.callbacks.Callback):
    def __init__(self, weight_var, transition, epochs):
        self.alpha = weight_var
        self.transition = transition
        self.epochs = epochs  
    def on_epoch_end(self, epoch, logs={}):
        if epoch > 680:
            if self.transition == "linear":
                K.set_value(self.alpha, ((epoch)/(self.epochs) - 0.617)*0.00001)
                tf.print(f"new weight {weight_var.numpy()}")
            if self.transition == "linear2":
                K.set_value(self.alpha, (1.5625*epoch - 1.0625)*0.00001)
                tf.print(f"new weight {weight_var.numpy()}")
            if self.transition == "log":
                K.set_value(self.alpha, (1- (tf.math.log(epoch*0.001 - 0.67285)/tf.math.log(0.0005)) - 0.35)*0.00001)
                tf.print("log")
            if self.transition == "log2":
                K.set_value(self.alpha, (1- (tf.math.log(epoch*0.001 - 0.6575)/tf.math.log(0.0005)) - 0.5)*0.00001)
                tf.print("log")    
            if self.transition == "log3":
                K.set_value(self.alpha, (1- (tf.math.log(epoch*0.001 - 0.67978)/tf.math.log(0.00000005)) - 0.5)*0.00001)
                tf.print("log")             
            if self.transition == "square":
                K.set_value(self.alpha, 4.1*tf.pow(epoch*0.001 - 0.65, 2) + 0.002)
                print("exp")
            if self.transition == "quad":
                K.set_value(self.alpha, 33*tf.pow(epoch*0.001 - 0.65, 4) + 0.002)
                print("quad")


def train_val_split(
    x_train: np.ndarray, y_train: np.ndarray, split: float = 0.2,
) -> tuple:

    slice: int = int(x_train.shape[0] * split)

    x_val: np.ndarray = x_train[-slice:]
    y_val: np.ndarray = y_train[-slice:]

    x_train = x_train[:-slice]
    y_train = y_train[:-slice]

    return (x_val, y_val, x_train, y_train)


"""Model Utils"""


def mean_percentile_rank(y_true, y_pred, k=5):
    """
    @paper
    The first evaluation measure is the Mean Percentile Rank
    (MPR) which is computed per synthesizer parameter.
    """
    # TODO


def top_k_mean_accuracy(y_true, y_pred, k=5):
    """
    @ paper
    The top-k mean accuracy is obtained by computing the top-k
    accuracy for each test example and then taking the mean across
    all examples. In the same manner as done in the MPR analysis,
    we compute the top-k mean accuracy per synthesizer
    parameter for π‘˜ = 1, ... ,5.
    """
    # TODO: per parameter?
    original_shape = tf.shape(y_true)
    y_true = tf.reshape(y_true, (-1, tf.shape(y_true)[-1]))
    y_pred = tf.reshape(y_pred, (-1, tf.shape(y_pred)[-1]))
    top_k = K.in_top_k(y_pred, tf.cast(tf.argmax(y_true, axis=-1), "int32"), k)
    correct_pred = tf.reshape(top_k, original_shape[:-1])
    return tf.reduce_mean(tf.cast(correct_pred, tf.float32))

@tf.function
def CustomLoss(y_true, y_pred):
    bce = tf.keras.losses.BinaryCrossentropy()
    weights = custom_spectral_loss(y_true, y_pred)
    weight_shift = (1-weight_var.numpy())+(weight_var.numpy()*weights.numpy())
    # tf.print(f"New weight is {weight_shift}")
    loss = bce(y_true, y_pred, sample_weight=weight_shift)
    return loss  

@tf.function
def custom_spectral_loss(y_true, y_pred):
    # tf.print("After compiling model :",tf.executing_eagerly())

    y_true = tf.reshape(y_true, (-1, tf.shape(y_true)[-1]))
    y_pred = tf.reshape(y_pred, (-1, tf.shape(y_pred)[-1]))

        
    # Assuming y_true and y_pred contain parameters for audio synthesis
    # Extract parameters from y_true and y_pred    
    with open("test_datasets/InverSynth_params.pckl", "rb") as f:
        parameters: ParameterSet = load(f)
    
    predlist_true: List[ParamValue] = parameters.decode(y_true[0])

    predlist_pred: List[ParamValue] = parameters.decode(y_pred[0])
    
    # Convert parameter lists to DataFrames
    # Generate audio from parameters
    audio_true, penalty = generate_audio(predlist_true)
    audio_pred, penalty = generate_audio(predlist_pred)

    # Compute spectrogram
    if SPECTRO_TYPE == 'spectro':
        spectrogram_true = tf.math.abs(tf.signal.stft(audio_true, frame_length=1024, frame_step=512))
        spectrogram_pred = tf.math.abs(tf.signal.stft(audio_pred, frame_length=1024, frame_step=512))
    elif SPECTRO_TYPE == 'qtrans':
        spectrogram_true = librosa.amplitude_to_db(librosa.cqt(audio_true, sr=SAMPLE_RATE, hop_length=128), ref=np.max)
        spectrogram_pred = librosa.amplitude_to_db(librosa.cqt(audio_pred, sr=SAMPLE_RATE, hop_length=128), ref=np.max)
    elif SPECTRO_TYPE == 'mel':
        mel_spect = librosa.feature.melspectrogram(audio_true, sr=SAMPLE_RATE, n_fft=2048, hop_length=1024)
        spectrogram_true = librosa.power_to_db(mel_spect, ref=np.max)
        mel_spect = librosa.feature.melspectrogram(audio_pred, sr=SAMPLE_RATE, n_fft=2048, hop_length=1024)
        spectrogram_pred = librosa.power_to_db(mel_spect, ref=np.max)
    #L1 LOSS
    if LOSS_TYPE == 'L1':
        spectral_loss = penalty*tf.reduce_mean(tf.abs(spectrogram_true-spectrogram_pred))
    #L2 LOSS
    elif LOSS_TYPE =='L2':
        spectral_loss = penalty*tf.reduce_mean((spectrogram_true - spectrogram_pred)**2)
    #COSINE LOSS
    elif LOSS_TYPE == 'COSINE':
        spectral_loss = tf.losses.cosine_distance(spectrogram_true, spectrogram_pred, weights=1.0, axis=-1)
    
    return spectral_loss

def summarize_compile(model: keras.Model):
    model.summary(line_length=80, positions=[0.33, 0.65, 0.8, 1.0], show_trainable=True, expand_nested=True)
    # Specify the training configuration (optimizer, loss, metrics)
    model.compile(
        optimizer=keras.optimizers.Adam(),  # Optimizer- Adam [14] optimizer
        # Loss function to minimize
        # @paper: Therefore, we converged on using sigmoid activations with binary cross entropy loss.
        # loss=keras.losses.BinaryCrossentropy(),
        loss=CustomLoss,
        # List of metrics to monitor
        metrics=[
            # @paper: 1) Mean Percentile Rank?
            # mean_percentile_rank,
            # @paper: 2) Top-k mean accuracy based evaluation
            top_k_mean_accuracy,
            custom_spectral_loss,
            # Extra Adding 3) spectroloss accuracy
            # Extra Adding 4) combined
            # @paper: 5) Mean Absolute Error based evaluation
            keras.metrics.MeanAbsoluteError(),
        ],
    )

def fit(
    model: keras.Model,
    x_train: np.ndarray,
    y_train: np.ndarray,
    x_val: np.ndarray,
    y_val: np.ndarray,
    batch_size: int = 16,
    epochs: int = 200,
) -> keras.Model:

    # @paper:
    # with a minibatch size of 16 for
    # 100 epochs. The best weights for each model were set by
    # employing an early stopping procedure.
    logging.info("# Fit model on training data")
    history = model.fit(
        x_train,
        y_train,
        batch_size=batch_size,
        epochs=epochs,
        # @paper:
        # Early stopping procedure:
        # We pass some validation for
        # monitoring validation loss and metrics
        # at the end of each epoch
        validation_data=(x_val, y_val),
        verbose=0,
    )

    # The returned "history" object holds a record
    # of the loss values and metric values during training
    logging.info("\nhistory dict:", history.history)

    return model


def compare(target, prediction, params, precision=1, print_output=False):
    if print_output and len(prediction) < 10:
        print(prediction)
        print("Pred: {}".format(np.round(prediction, decimals=2)))
        print("PRnd: {}".format(np.round(prediction)))
        print("Act : {}".format(target))
        print("+" * 5)

    pred: List[ParamValue] = params.decode(prediction)
    act: List[ParamValue] = params.decode(target)
    pred_index: List[int] = [np.array(p.encoding).argmax() for p in pred]
    act_index: List[int] = [np.array(p.encoding).argmax() for p in act]
    width = 8
    names = "Parameter: "
    act_s = "Actual:    "
    pred_s = "Predicted: "
    pred_i = "Pred. Indx:"
    act_i = "Act. Index:"
    diff_i = "Index Diff:"
    for p in act:
        names += p.name.rjust(width)[:width]
        act_s += f"{p.value:>8.2f}"
    for p in pred:
        pred_s += f"{p.value:>8.2f}"
    for p in pred_index:
        pred_i += f"{p:>8}"
    for p in act_index:
        act_i += f"{p:>8}"
    for i in range(len(act_index)):
        diff = pred_index[i] - act_index[i]
        diff_i += f"{diff:>8}"
    exact = 0.0
    close = 0.0
    n_params = len(pred_index)
    for i in range(n_params):
        if pred_index[i] == act_index[i]:
            exact = exact + 1.0
        if abs(pred_index[i] - act_index[i]) <= precision:
            close = close + 1.0
    exact_ratio = exact / n_params
    close_ratio = close / n_params
    if print_output:
        print(names)
        print(act_s)
        print(pred_s)
        print(act_i)
        print(pred_i)
        print(diff_i)
        print("-" * 30)
    return exact_ratio, close_ratio


def evaluate(
    prediction: np.ndarray, x: np.ndarray, y: np.ndarray, params: ParameterSet,
):

    print("Prediction Shape: {}".format(prediction.shape))

    num: int = x.shape[0]
    correct: int = 0
    correct_r: float = 0.0
    close_r: float = 0.0
    for i in range(num):
        should_print = i < 5
        exact, close = compare(
            target=y[i],
            prediction=prediction[i],
            params=params,
            print_output=should_print,
        )
        if exact == 1.0:
            correct = correct + 1
        correct_r += exact
        close_r += close
    summary = params.explain()
    print(
        "{} Parameters with {} levels (fixed: {})".format(
            summary["n_variable"], summary["levels"], summary["n_fixed"]
        )
    )
    print(
        "Got {} out of {} ({:.1f}% perfect); Exact params: {:.1f}%, Close params: {:.1f}%".format(
            correct,
            num,
            correct / num * 100,
            correct_r / num * 100,
            close_r / num * 100,
        )
    )


def data_format_audio(audio: np.ndarray, data_format: str) -> np.ndarray:
    # `(None, n_channel, n_freq, n_time)` if `'channels_first'`,
    # `(None, n_freq, n_time, n_channel)` if `'channels_last'`,

    if data_format == "channels_last":
        audio = audio[np.newaxis, :, np.newaxis]
    else:
        audio = audio[np.newaxis, np.newaxis, :]

    return audio


"""
Wrap up the whole training process in a standard function. Gets a callback
to actually make the model, to keep it as flexible as possible.
# Params:
# - dataset_name (dataset name)
# - model_name: (C1..C6,e2e)
# - model_callback: function taking name,inputs,outputs,data_format and returning a Keras model
# - epochs: int
# - dataset_dir: place to find input data
# - output_dir: place to put outputs
# - parameters_file (override parameters filename)
# - dataset_file (override dataset filename)
# - data_format (channels_first or channels_last)
# - run_name: to save this run as
"""
#LOSS TYPE FOR CUSTOM LOSS FUNCTION
LOSS_TYPE = 'L1'
SPECTRO_TYPE = 'spectro'
PRINT = 1

#DAWDREAMER EXPORT SETTINGS
SAMPLE_RATE = 16384
BUFFER_SIZE = 1024
SYNTH_PLUGIN = "libTAL-NoiseMaker.so"

ENGINE = daw.RenderEngine(SAMPLE_RATE, BUFFER_SIZE)
SYNTH = ENGINE.make_plugin_processor("my_synth", SYNTH_PLUGIN)
SYNTH.add_midi_note(40, 127, 0, 0.8)

with open('plugin_config/TAL-NoiseMaker-config.json') as f:
    data = json.load(f)

dico=[]
# Extract the key ID from the JSON data
key_id = data['parameters']
for param in key_id:
    dico.append(param['id'])

DICO=dico

def train_model(
    # Main options
    dataset_name: str,
    model_name: str,
    epochs: int,
    model_callback: Callable[[str, int, int, str], keras.Model],
    dataset_dir: str,
    output_dir: str,  # Directory names
    dataset_file: str = None,
    parameters_file: str = None,
    run_name: str = None,
    data_format: str = "channels_last",
    save_best: bool = True,
    resume: bool = False,
    checkpoint: bool = True,
    model_type: str = "STFT",
):

    tf.config.run_functions_eagerly(True)
    # tf.data.experimental.enable_debug_mode()
    time_generated = datetime.datetime.now().strftime('%Y%m%d-%H%M%S')
    if not dataset_file:
        dataset_file = (
            os.getcwd() + "/" + dataset_dir + "/" + dataset_name + "_data.hdf5"
        )
    if not parameters_file:
        parameters_file = (
            os.getcwd() + "/" + dataset_dir + "/" + dataset_name + "_params.pckl"
        )
    if not run_name:
        run_name = dataset_name + "_" + model_name

    model_file = f"{output_dir}/model/{run_name}_{time_generated}"
    if not os.path.exists(model_file):
        os.makedirs(model_file)
    best_model_file = f"{output_dir}/best_checkpoint/{run_name}_best_{time_generated}"
    if not os.path.exists(best_model_file):
        os.makedirs(best_model_file)
    if resume: 
        
        # checkpoint_model_file = f"{output_dir}/{run_name}_checkpoint_{datetime.datetime.now().strftime('%Y%m%d-%H%M%S')}"
        # history_file = f"{output_dir}/{run_name}_{datetime.datetime.now().strftime('%Y%m%d-%H%M%S')}"
        checkpoint_model_file = f"{output_dir}/history/InverSynth_C6XL_checkpoint_20231201-103344"
        history_file = f"{output_dir}/checkpoints/InverSynth_C6XL_20231201-103344"
    else:
        os.makedirs(f"{output_dir}/history", exist_ok=True)
        os.makedirs(f"{output_dir}/checkpoints", exist_ok=True)
        history_file = f"{output_dir}/history/{run_name}_{time_generated}"
        checkpoint_model_file = f"{output_dir}/checkpoints/{run_name}_checkpoint_{time_generated}"
            
    history_graph_file = f"{output_dir}/{run_name}.pdf"
    print(tf.config.list_physical_devices('GPU'))
    gpu_avail = len(tf.config.list_physical_devices('GPU'))  # True/False
    cuda_gpu_avail = len(tf.config.list_physical_devices('GPU'))  # True/False

    print("+" * 30)
    print(f"++ {run_name}")
    print(
        f"Running model: {model_name} on dataset {dataset_file} (parameters {parameters_file}) for {epochs} epochs"
    )
    print(f"Saving model in {output_dir} as {model_file}")
    print(f"Saving history as {history_file}")
    print(f"GPU: {gpu_avail}, with CUDA: {cuda_gpu_avail}")
    print("+" * 30)

    os.makedirs(output_dir, exist_ok=True)

    # Get training and validation generators
    params = {"data_file": dataset_file, "batch_size": 64, "shuffle": True}
    training_generator = SoundDataGenerator(first=0.8, **params)
    validation_generator = SoundDataGenerator(last=0.2, **params)
    n_samples = training_generator.get_audio_length()
    print(f"get_audio_length: {n_samples}")
    n_outputs = training_generator.get_label_size()

    # set keras image_data_format
    # NOTE: on CPU only `channels_last` is supported
    physical_devices = tf.config.list_physical_devices('GPU')
   
    keras.backend.set_image_data_format(data_format)

    model: keras.Model = None
    if resume and os.path.exists(checkpoint_model_file):
        history = pd.read_csv(history_file)
        # Note - its zero indexed in the file, but 1 indexed in the display
        initial_epoch: int = max(history.iloc[:, 0]) + 1
        # epochs:int = initial_epoch
        print(
            f"Resuming from model file: {checkpoint_model_file} after epoch {initial_epoch}"
        )
        model = keras.models.load_model(
            checkpoint_model_file
            ,
            custom_objects={"top_k_mean_accuracy": top_k_mean_accuracy, "Spectrogram" : Spectrogram,
                            "custom_spectral_loss": custom_spectral_loss, "CustomLoss": CustomLoss
                            },
        )
    else:
        model = model_callback(
            model_name=model_name,
            inputs=n_samples,
            outputs=n_outputs,
            data_format=data_format,
        )
        # keras.utils.plot_model(model, to_file='model.png', show_shapes=True, show_layer_activations=True)
        # Summarize and compile the model
        summarize_compile(model)
        initial_epoch = 0
        open(history_file, "w").close()

    callbacks = []
    best_callback = keras.callbacks.ModelCheckpoint(
        filepath=best_model_file,
        save_weights_only=False,
        save_best_only=True,
        verbose=1,
    )
    checkpoint_callback = keras.callbacks.ModelCheckpoint(
        filepath=checkpoint_model_file,
        save_weights_only=False,
        save_best_only=False,
        verbose=1,
    )
    os.makedirs(f"{output_dir}/logs", exist_ok=True)
    log_dir = f"{output_dir}/logs/" + time_generated
    tensorboard_callback = keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1, write_graph=True, write_images=True, profile_batch = '500,520')

    if save_best:
        callbacks.append(best_callback)
    if checkpoint:
        callbacks.append(checkpoint_callback)
    callbacks.append(tensorboard_callback)
    callbacks.append(CSVLogger(history_file, append=True))
    callbacks.append(Weight_trans(weight_var, "log3" ,epochs))
        # Parameter data - needed for decoding!
    
    # Fit the model
    history = None
    try:
        history =   model.fit(
            x=training_generator,
            validation_data=validation_generator,
            epochs=epochs,
            callbacks=callbacks,
            initial_epoch=initial_epoch,
            verbose=1,  # https://github.com/tensorflow/tensorflow/issues/38064
        )
    except Exception as e:
        print(f"Something went wrong during `model.fit`: {e}")

    # Save model
    model.save(model_file)

    # Save history
    if history and not resume:
        try:
            hist_df = pd.DataFrame(history.history)
            try:
                fig = hist_df.plot(subplots=True, figsize=(8, 25))
                fig[0].get_figure().savefig(history_graph_file)
            except Exception as e:
                print("Couldn't create history graph")
                print(e)

        except Exception as e:
            tf.print("Couldn't save history")
            print(e)

    # evaluate prediction on random sample from validation set
    # Parameter data - needed for decoding!
    with open(parameters_file, "rb") as f:
        parameters: ParameterSet = load(f)

    # Shuffle data
    validation_generator.on_epoch_end()
    X, y = validation_generator.__getitem__(0)
    X.reshape((X.__len__(), 1, 16384))

    # if model_type == "STFT":
    #     # stft expects shape (channel, sample_rate)
    #     X = np.moveaxis(X, 1, -1)
    prediction: np.ndarray = model.predict(X)
    evaluate(prediction, X, y, parameters)
    
    print("++++" * 5)
    print("Pushing to trained model")
    print("++++" * 5)
    
    Valid=False
    while Valid==False:
        file = namefile = input("Enter .wav test file path: ")
        if os.path.exists(file):
            Valid=True
        else:
            print("File Path invalid, try again ")
        
    newpred = model.predict(audio_importer(str(f'{namefile}')))
    predlist: List[ParamValue] = parameters.decode(newpred[0])
    df = pd.DataFrame(predlist) 
    
    print(df)
    df = df.drop(['encoding'], axis=1)
    # saving the dataframe
    if not os.path.exists(str(f'output/wav_inferred')):
        os.makedirs(str(f'output/wav_inferred'))
    head, tail = os.path.split(str(f'{namefile}'))
    print("Outputting CSV config in " + str(f'output/wav_inferred'))
    df.to_csv(str(f'output/wav_inferred/{tail}.csv'))
    #export(prediction, X, y, parameters)
    # Loop through the rows of the DataFrame
    i = 0
    for values in df['value'].values:
        # Set parameters using DataFrame values
        SYNTH.set_parameter(DICO[i],values)
        # (MIDI note, velocity, start, duration)
        i += 1
    #Setting volume to 0.9
    SYNTH.set_parameter(1, 0.9)
    # Set up the processing graph
    graph = [
        # synth takes no inputs, so we give an empty list.
        (SYNTH, []),
    ]

    ENGINE.load_graph(graph)
    ENGINE.render(1)
    data = ENGINE.get_audio()
    try:
        data = librosa.to_mono(data).transpose()
    except:
        tf.print("ERROR" * 100)
        df = df.fillna(0)
        data = df.to_numpy()
        data = librosa.to_mono(data).transpose()
        tf.print("crashed, nan in generation")
        synth_params = dict(SYNTH.get_patch())
        print(synth_params)
    
    df = pd.DataFrame(data)
        
        # penalty=1000000
        # df = pd.DataFrame(data)
        # df = df.fillna(0)
        # data = df.to_numpy()

          
    wavfile.write(str(f'output/wav_inferred/gen_{tail}.wav'), SAMPLE_RATE, data)
        
def generate_audio(df_params):

    
    # Loop through the rows of the DataFrame
    i = 0
    penalty=1
    for param in df_params:
        # Set parameters using DataFrame values
        SYNTH.set_parameter(DICO[i], param.value)
        # (MIDI note, velocity, start, duration)
        i += 1
    # Set up the processing graph
    graph = [
        # synth takes no inputs, so we give an empty list.
        (SYNTH, []),
    ]

    ENGINE.load_graph(graph)
    ENGINE.render(1)
    data = ENGINE.get_audio()
    if np.isnan(data).any():
        
        # df = pd.DataFrame(data)
        # df = df.fillna(0)
        # data = df.to_numpy()

        tf.print("crashed, nan in generation")
        synth_params = dict(SYNTH.get_patch())
        print(synth_params)
    try:
        data = librosa.to_mono(data).transpose()
        if(librosa.util.valid_audio(data)):
            result = np.array(data)
            return result, penalty
    except:
        tf.print("crashed, nan in generation")
        raise("Nan in generation, crashed")