Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,898 Bytes
3abec55 c9a6769 25d52be 988bee5 b57e1c8 2f26f31 24570e1 aa6782f b57e1c8 aa6782f a19e6cc eb04357 faccdf3 aa6782f 34ffddc 2de1404 55a202e faccdf3 89058ca faccdf3 ee6b48c 3abec55 b57e1c8 3d36a53 faccdf3 fd9c629 755cb36 faccdf3 d5b7fec faccdf3 d5b7fec b57e1c8 d5b7fec faccdf3 d5b7fec d795b4c cf49126 d5b7fec 6af08b9 faccdf3 6af08b9 faccdf3 07402ca 6af08b9 faccdf3 6af08b9 d5b7fec faccdf3 d5b7fec faccdf3 b57e1c8 d5b7fec b57e1c8 faccdf3 07402ca faccdf3 b57e1c8 faccdf3 07402ca faccdf3 b57e1c8 c10aeb0 faccdf3 755cb36 faccdf3 c10aeb0 faccdf3 c10aeb0 faccdf3 b57e1c8 c10aeb0 b57e1c8 faccdf3 755cb36 faccdf3 c10aeb0 faccdf3 c10aeb0 b57e1c8 6af08b9 23a049d 2de1404 faccdf3 6af08b9 faccdf3 fd9c629 faccdf3 cf49126 faccdf3 cf49126 faccdf3 cf49126 6af08b9 cf49126 6af08b9 faccdf3 6af08b9 9a346a6 08996c1 7e9dcdd 08996c1 aa2425e 9a346a6 faccdf3 55a202e faccdf3 9a346a6 faccdf3 55a202e faccdf3 625315a 2a61ab0 faccdf3 3efe928 faccdf3 cf49126 faccdf3 6af08b9 bca73d7 deccfda faccdf3 a18f018 faccdf3 a97bc04 faccdf3 42773a3 faccdf3 6af08b9 faccdf3 6af08b9 faccdf3 6af08b9 faccdf3 6345be3 755cb36 faccdf3 3efe928 b57e1c8 faccdf3 0754af5 b57e1c8 6af08b9 faccdf3 aa6782f 89fb757 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
import gradio as gr
import os
os.environ['SPCONV_ALGO'] = 'native'
import spaces
from gradio_litmodel3d import LitModel3D
import warp as wp
import subprocess
import torch
import uuid
from threading import Thread
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor,TextIteratorStreamer,AutoTokenizer
from qwen_vl_utils import process_vision_info
from trellis.pipelines import TrellisImageTo3DPipeline,TrellisTextTo3DPipeline
from trellis.utils import render_utils, postprocessing_utils
import trimesh
from trimesh.exchange.gltf import export_glb
import tempfile
import copy
#import plotly.graph_objs as go
import plotly.graph_objects as go
from PIL import Image
import plotly.express as px
import random
import open3d as o3d
import imageio
from huggingface_hub import hf_hub_download
import numpy as np
HF_TOKEN = os.environ.get("HF_TOKEN", None)
TMP_DIR = "/tmp/Trellis-demo"
os.makedirs(TMP_DIR, exist_ok=True)
def _remove_image_special(text):
text = text.replace('<ref>', '').replace('</ref>', '')
return re.sub(r'<box>.*?(</box>|$)', '', text)
def is_video_file(filename):
video_extensions = ['.mp4', '.avi', '.mkv', '.mov', '.wmv', '.flv', '.webm', '.mpeg']
return any(filename.lower().endswith(ext) for ext in video_extensions)
def token_to_mesh(full_response):
d1=full_response.split("><mesh")
d2=[]
for i in range(len(d1)):
try:
if d1[i][:5]=="<mesh":
d2.append(int(d1[i][5:]))
else:
d2.append(int(d1[i]))
except:
pass
while len(d2)<1024:
d2.append(d2[-1])
encoding_indices=torch.tensor(d2).unsqueeze(0)
return encoding_indices
def save_ply_from_array(verts):
header = [
"ply",
"format ascii 1.0",
f"element vertex {verts.shape[0]}",
"property float x",
"property float y",
"property float z",
"end_header"
]
tmpf = tempfile.NamedTemporaryFile(suffix=".ply", delete=False)
tmpf.write(("\n".join(header) + "\n").encode("utf-8"))
np.savetxt(tmpf, verts, fmt="%.6f")
tmpf.flush(); tmpf.close()
return tmpf.name
@spaces.GPU(duration=120)
def predict(_chatbot,task_history,viewer_voxel,viewer_mesh,task_new,seed,top_k,top_p,temperature,video_path,simplify,texture_size):
torch.manual_seed(seed)
chat_query = _chatbot[-1][0]
query = task_history[-1][0]
if len(chat_query) == 0:
_chatbot.pop()
task_history.pop()
return _chatbot,task_history,viewer_voxel,viewer_mesh,task_new,video_path
print("User: " + _parse_text(query))
history_cp = copy.deepcopy(task_history)
full_response = ""
messages = []
content = []
image_lst = []
for q, a in task_new:
if isinstance(q, (tuple, list)):
if not is_video_file(q[0]):
image_lst.append(q[0])
else:
image_lst.append(q[0])
task_new.clear()
for q, a in history_cp:
if isinstance(q, (tuple, list)):
if is_video_file(q[0]):
content.append({'video': f'file://{q[0]}'})
else:
trial_id = uuid.uuid4()
pipeline_image.preprocess_image_white(Image.open(q[0])).save(f"{TMP_DIR}/{trial_id}.png", "png")
content.append({'image': f'file://{TMP_DIR}/{trial_id}.png'})
#content.append({'image': f'file://{q[0]}'})
else:
content.append({'text': q})
messages.append({'role': 'user', 'content': content})
messages.append({'role': 'assistant', 'content': [{'text': a}]})
content = []
messages.pop()
messages = _transform_messages(messages)
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(text=[text], images=image_inputs,videos=video_inputs, padding=True, return_tensors='pt')
inputs = inputs.to("cuda")
eos_token_id = [tokenizer.eos_token_id,159858]
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
gen_kwargs = {'max_new_tokens': 2048, 'streamer': streamer,"eos_token_id":eos_token_id,\
"top_k":top_k,"top_p":top_p,"temperature":temperature,"eos_token_id":eos_token_id,**inputs}
thread = Thread(target=model.generate, kwargs=gen_kwargs)
thread.start()
full_response = ""
encoding_indices = None
_chatbot[-1] = (_parse_text(chat_query), "")
for new_text in streamer:
if new_text:
if "<mesh" in new_text:
encoding_indices = token_to_mesh(new_text)
new_text = new_text.replace("><",",")[1:-1]
new_text = new_text.split("mesh-start,")[1].split(",mesh-end")[0]
new_text = f"mesh-start\n{new_text}\nmesh-end"
full_response += new_text
_chatbot[-1] = (_parse_text(chat_query), _parse_text(full_response))
yield _chatbot,viewer_voxel,viewer_mesh,task_new,video_path
task_history[-1] = (chat_query, full_response)
yield _chatbot,viewer_voxel,viewer_mesh,task_new,video_path
if encoding_indices is not None:
print("processing mesh...")
recon = vqvae.Decode(encoding_indices.to("cuda"))
z_s = recon[0].detach().cpu()
z_s = (z_s>0)*1
indices = torch.nonzero(z_s[0] == 1)
position_recon= (indices.float() + 0.5) / 64 - 0.5
fig = make_pointcloud_figure(position_recon)
yield _chatbot,fig,viewer_mesh,task_new,video_path
position=position_recon
coords = ((position + 0.5) * 64).int().contiguous()
ss = torch.zeros(1, 64, 64, 64, dtype=torch.long)
ss[:, coords[:, 0], coords[:, 1], coords[:, 2]] = 1
ss=ss.unsqueeze(0)
coords = torch.argwhere(ss>0)[:, [0, 2, 3, 4]].int()
coords = coords.to("cuda")
try:
print("processing mesh...")
if len(image_lst) == 0:
# text to 3d
with torch.no_grad():
prompt = chat_query
cond = pipeline_text.get_cond([prompt])
slat = pipeline_text.sample_slat(cond, coords)
outputs = pipeline_text.decode_slat(slat, ['mesh', 'gaussian'])
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
trial_id = uuid.uuid4()
video_path = f"{TMP_DIR}/{trial_id}.mp4"
os.makedirs(os.path.dirname(video_path), exist_ok=True)
imageio.mimsave(video_path, video, fps=15)
yield _chatbot,fig,viewer_mesh,task_new,video_path
glb = postprocessing_utils.to_glb(
outputs['gaussian'][0],
outputs['mesh'][0],
simplify=simplify,
texture_size=texture_size,
verbose=False
)
glb.export(f"{TMP_DIR}/{trial_id}.glb")
print("processing mesh over...")
yield _chatbot,fig,f"{TMP_DIR}/{trial_id}.glb",task_new,video_path
else:
# image to 3d
with torch.no_grad():
img = pipeline_image.preprocess_image(Image.open(image_lst[-1]))
cond = pipeline_image.get_cond([img])
slat = pipeline_image.sample_slat(cond, coords)
outputs = pipeline_image.decode_slat(slat, ['mesh', 'gaussian'])
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
trial_id = uuid.uuid4()
video_path = f"{TMP_DIR}/{trial_id}.mp4"
os.makedirs(os.path.dirname(video_path), exist_ok=True)
imageio.mimsave(video_path, video, fps=15)
yield _chatbot,fig,viewer_mesh,task_new,video_path
glb = postprocessing_utils.to_glb(
outputs['gaussian'][0],
outputs['mesh'][0],
simplify=simplify,
texture_size=texture_size,
verbose=False
)
glb.export(f"{TMP_DIR}/{trial_id}.glb")
print("processing mesh over...")
yield _chatbot,fig,f"{TMP_DIR}/{trial_id}.glb",task_new,video_path
except Exception as e:
print(e)
yield _chatbot,fig,viewer_mesh,task_new,video_path
def regenerate(_chatbot, task_history):
if not task_history:
return _chatbot
item = task_history[-1]
if item[1] is None:
return _chatbot
task_history[-1] = (item[0], None)
chatbot_item = _chatbot.pop(-1)
if chatbot_item[0] is None:
_chatbot[-1] = (_chatbot[-1][0], None)
else:
_chatbot.append((chatbot_item[0], None))
_chatbot_gen = predict(_chatbot, task_history)
for _chatbot in _chatbot_gen:
yield _chatbot
def _parse_text(text):
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f"<br></code></pre>"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>" + line
text = "".join(lines)
return text
def add_text_prefix(text):
text = f"Please generate a 3D asset based on the prompt I provided: {text}"
return gr.update(value=text)
def token_to_words(token):
mesh = "<mesh-start>"
for j in range(1024):
mesh += f"<mesh{token[j]}>"
mesh += "<mesh-end>"
return mesh
def add_text(history, task_history, text,task_new):
task_text = text
history = history if history is not None else []
task_history = task_history if task_history is not None else []
history = history + [(_parse_text(text), None)]
task_history = task_history + [(task_text, None)]
task_new = task_new + [(task_text, None)]
return history, task_history,task_new
@spaces.GPU(duration=120)
def add_file(history, task_history, file, task_new, fig, query):
if file.name.endswith(('.obj', '.glb')):
position_recon = load_vertices(file.name)#(N,3)
coords = ((torch.from_numpy(position_recon) + 0.5) * 64).int().contiguous()
ss = torch.zeros(1, 64, 64, 64, dtype=torch.long)
ss[:, coords[:, 0], coords[:, 1], coords[:, 2]] = 1
token = vqvae.Encode(ss.to(dtype=torch.float32).unsqueeze(0).to("cuda"))
token = token[0].cpu().numpy().tolist()
words = token_to_words(token)
fig = make_pointcloud_figure(position_recon,rotate=True)
return history, task_history,file.name,task_new,fig,gr.update(
value= f"{words}\nGive a quick overview of the object represented by this 3D mesh.")
history = history if history is not None else []
task_history = task_history if task_history is not None else []
history = history + [((file.name,), None)]
task_history = task_history + [((file.name,), None)]
task_new = task_new + [((file.name,), None)]
return history, task_history, file.name, task_new, fig, query
def reset_user_input():
return gr.update(value="")
def reset_state(task_history):
task_history.clear()
return []
def make_pointcloud_figure_success(verts,rotate=False):
fig = go.Figure(go.Scatter3d(
x=[0.005*n for n in range(100)], y=[0.005*n for n in range(100)], z=[0.005*n for n in range(100)],
mode='markers', marker=dict(size=8)
))
return fig
def make_pointcloud_figure(verts,rotate=False):
if rotate:
verts = verts.copy()
verts[:, 0] *= -1.0
N = len(verts)
soft_palette = ["#FFEBEE", "#FFF3E0", "#FFFDE7", "#E8F5E9",]
palette = px.colors.qualitative.Set3
base_colors = [palette[i % len(palette)] for i in range(N)]
random.shuffle(base_colors)
camera = dict(
eye=dict(x=0.0, y=2.5, z=0.0),
center=dict(x=0.0, y=0.0, z=0.0),
up=dict(x=0.0, y=0.0, z=1.0),
projection=dict(type="orthographic")
)
scatter = go.Scatter3d(
x=verts[:, 0].tolist(),
y=verts[:, 1].tolist(),
z=verts[:, 2].tolist(),
mode='markers',
marker=dict(
size=2,
color=base_colors,
opacity=1,
line=dict(width=1)
)
)
layout = go.Layout(
width =800,
height=300,
scene=dict(
xaxis=dict(visible=False, range=[-0.6,0.6]),
yaxis=dict(visible=False, range=[-0.6,0.6]),
zaxis=dict(visible=False, range=[-0.6,0.6]),
camera=camera
),
margin=dict(l=0, r=0, b=0, t=0)
)
fig = go.Figure(data=[scatter], layout=layout)
return fig
def rotate_points(points, axis='x', angle_deg=90):
angle_rad = np.deg2rad(angle_deg)
if axis == 'x':
R = trimesh.transformations.rotation_matrix(angle_rad, [1, 0, 0])[:3, :3]
elif axis == 'y':
R = trimesh.transformations.rotation_matrix(angle_rad, [0, 1, 0])[:3, :3]
elif axis == 'z':
R = trimesh.transformations.rotation_matrix(angle_rad, [0, 0, 1])[:3, :3]
else:
raise ValueError("axis must be 'x', 'y', or 'z'")
return points @ R.T
def convert_trimesh_to_open3d(trimesh_mesh):
o3d_mesh = o3d.geometry.TriangleMesh()
o3d_mesh.vertices = o3d.utility.Vector3dVector(
np.asarray(trimesh_mesh.vertices, dtype=np.float64)
)
o3d_mesh.triangles = o3d.utility.Vector3iVector(
np.asarray(trimesh_mesh.faces, dtype=np.int32)
)
return o3d_mesh
def load_vertices(filepath):
mesh = trimesh.load(filepath, force='mesh')
mesh = convert_trimesh_to_open3d(mesh)
vertices = np.asarray(mesh.vertices)
min_vals = vertices.min()
max_vals = vertices.max()
vertices_normalized = (vertices - min_vals) / (max_vals - min_vals)
vertices = vertices_normalized * 1.0 - 0.5
vertices = np.clip(vertices, -0.5 + 1e-6, 0.5 - 1e-6)
mesh.vertices = o3d.utility.Vector3dVector(vertices)
voxel_grid = o3d.geometry.VoxelGrid.create_from_triangle_mesh_within_bounds(mesh, voxel_size=1/64, min_bound=(-0.5, -0.5, -0.5), max_bound=(0.5, 0.5, 0.5))
vertices = np.array([voxel.grid_index for voxel in voxel_grid.get_voxels()])
assert np.all(vertices >= 0) and np.all(vertices < 64), "Some vertices are out of bounds"
vertices = (vertices + 0.5) / 64 - 0.5
voxel = rotate_points(vertices, axis='x', angle_deg=90)
return voxel
def add_file2(history, task_history, file,task_new):
history = history if history is not None else []
task_history = task_history if task_history is not None else []
history = history + [((file,), None)]
task_history = task_history + [((file,), None)]
task_new = task_new + [((file,), None)]
return history, task_history, file, task_new
def _transform_messages(original_messages):
transformed_messages = []
for message in original_messages:
new_content = []
for item in message['content']:
if 'image' in item:
new_item = {'type': 'image', 'image': item['image']}
elif 'text' in item:
new_item = {'type': 'text', 'text': item['text']}
elif 'video' in item:
new_item = {'type': 'video', 'video': item['video']}
else:
continue
new_content.append(new_item)
new_message = {'role': message['role'], 'content': new_content}
transformed_messages.append(new_message)
return transformed_messages
print(f"CUDA Available: {torch.cuda.is_available()}")
print(f"CUDA Version: {torch.version.cuda}")
print(f"Number of GPUs: {torch.cuda.device_count()}")
from trellis.models.sparse_structure_vqvae import VQVAE3D
device = torch.device("cuda")
vqvae = VQVAE3D(num_embeddings=8192)
vqvae.eval()
filepath = hf_hub_download(repo_id="yejunliang23/3DVQVAE",filename="3DVQVAE.bin")
state_dict = torch.load(filepath, map_location="cpu")
vqvae.load_state_dict(state_dict)
vqvae=vqvae.to(device)
MODEL_DIR = "yejunliang23/ShapeLLM-7B-omni"
model_ckpt_path=MODEL_DIR
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(model_ckpt_path, torch_dtype="auto", device_map="auto")
processor = AutoProcessor.from_pretrained(model_ckpt_path)
tokenizer = processor.tokenizer
from huggingface_hub import hf_hub_download
pipeline_text = TrellisTextTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-text-xlarge")
pipeline_text.to(device)
pipeline_image = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
pipeline_image.to(device)
_DESCRIPTION = '''
* Project page of ShapeLLM-Omni: https://jamesyjl.github.io/ShapeLLM/
* As generation tasks currently lack support for multi-turn dialogue, it's strongly recommended to clear the chat history before starting a new task
* The model's 3D understanding is limited to shape only, so color and texture should be ignored in 3D captioning tasks
'''
with gr.Blocks() as demo:
gr.Markdown("# ShapeLLM-omni: A Native Multimodal LLM for 3D Generation and Understanding")
gr.Markdown(_DESCRIPTION)
with gr.Row():
with gr.Column():
chatbot = gr.Chatbot(label='ShapeLLM-Omni', elem_classes="control-height", height=500)
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Number(value=42, label="seed", precision=0)
top_k = gr.Slider(label="top_k",minimum=1024,maximum=8194,value=1024,step=10)
top_p = gr.Slider(label="top_p",minimum=0.1,maximum=1.0,value=0.1,step=0.05)
temperature = gr.Slider(label="temperature",minimum=0.1,maximum=1.0,value=0.1,step=0.05)
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
query = gr.Textbox(lines=2, label='Input')
image_input = gr.Image(visible=False, type="filepath", label="Image Input")
with gr.Column():
with gr.Row():
addfile_btn = gr.UploadButton("📁 Upload", file_types=["image", "video",".obj",".glb"])
submit_btn = gr.Button("🚀 Submit")
with gr.Row():
regen_btn = gr.Button("🤔️ Regenerate")
empty_bin = gr.Button("🧹 Clear History")
task_history = gr.State([])
task_new = gr.State([])
with gr.Column():
viewer_plot = gr.Plot(label="Voxel Visual",scale=0.5)
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
viewer_mesh = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
examples_text = gr.Examples(
examples=[
["A drone with four propellers and a central body."],
["A stone axe with a handle."],
["the titanic, aerial view."],
["A 3D model of a small yellow and blue robot with wheels and two pots."],
["A futuristic vehicle with a sleek design and multiple wheels."],
["A car with four wheels and a roof."],
],
inputs=[query],
label="text-to-3d examples",
fn=add_text_prefix,
outputs=[query],
cache_examples=True,
)
examples_text.dataset.click(
fn=add_text,
inputs=[chatbot, task_history, query,task_new],
outputs=[chatbot, task_history,task_new],
)
examples_image = gr.Examples(
label="image-to-3d examples",
examples=[os.path.join("examples", i) for i in os.listdir("examples")],
inputs=[image_input],
examples_per_page = 20,
)
image_input.change(
fn=add_file2,
inputs=[chatbot, task_history, image_input,task_new],
outputs=[chatbot, task_history,viewer_mesh,task_new],
show_progress=True
)
submit_btn.click(add_text, [chatbot, task_history, query,task_new],\
[chatbot, task_history,task_new]).then(
predict, [chatbot, task_history,viewer_plot,viewer_mesh,task_new,seed,top_k,top_p,temperature,video_output,mesh_simplify,texture_size],\
[chatbot,viewer_plot,viewer_mesh,task_new,video_output], show_progress=True
)
submit_btn.click(reset_user_input, [], [query])
empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True)
regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True)
addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn, task_new, viewer_plot, query],\
[chatbot, task_history, viewer_mesh, task_new, viewer_plot, query],\
show_progress=True)
demo.launch() |