File size: 8,893 Bytes
eaa3d8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# src.kg.generate_kg.py
import pickle
from collections import defaultdict, Counter
from contextlib import redirect_stdout
from pathlib import Path
import json
import argparse
import os
import openai
import time
import numpy as np

import networkx as nx
from pyvis.network import Network
from tqdm import tqdm
from contextlib import redirect_stdout



from .knowledge_graph import generate_knowledge_graph
from .openai_api import load_response_text
from .save_triples import get_response_save_path
from .utils import set_up_logging

logger = set_up_logging('generate-knowledge-graphs-books.log')
KNOWLEDGE_GRAPHS_DIRECTORY_PATH = Path('../knowledge-graphs_new')


"""def gpt_inference(system_instruction, prompt, retries=10, delay=5):
    # api 
    messages = [{"role": "system", "content": system_instruction}, 
                {"role": "user", "content": prompt}]
    
    for attempt in range(retries):
        try:
            response = openai.ChatCompletion.create(
                model='gpt-4o-mini-2024-07-18',
                messages=messages,
                temperature=0.0,
                max_tokens=128,
                top_p=0.5,
                frequency_penalty=0,
                presence_penalty=0
            )
            result = response['choices'][0]['message']['content']
            return result
        except openai.error.APIError as e:
            
            time.sleep(delay)
            continue"""


def generate_knowledge_graph_for_scripts(book, idx, save_path):
    """
    Use the responses from the OpenAI API to generate a knowledge graph for a
    book.
    """
    response_texts = defaultdict(list)
    project_gutenberg_id = book['id']
    for chapter in book['chapters']:
        chapter_index = chapter['index']
        chapter_responses_directory = get_response_save_path(
            idx, save_path, project_gutenberg_id, chapter_index)
        for response_path in chapter_responses_directory.glob('*.json'):
            response_text = load_response_text(response_path)
            response_texts[chapter_index].append(response_text)
    knowledge_graph = generate_knowledge_graph(response_texts, project_gutenberg_id)
    return knowledge_graph

def generate_knowledge_graph_for_scripts(book, idx, response_list):
    """
    Use the responses from the OpenAI API to generate a knowledge graph for a
    book.
    """

    response_texts = defaultdict(list)
    project_gutenberg_id = book['id']
    for chapter in book['chapters']:
        chapter_index = chapter['index']
        for response in response_list:
            response_texts[chapter_index].append(response['response'])
    knowledge_graph = generate_knowledge_graph(response_texts, project_gutenberg_id)
    return knowledge_graph


def save_knowledge_graph(knowledge_graph,
                         project_gutenberg_id, save_path):
    """Save a knowledge graph to a `pickle` file."""
    save_path = save_path / 'kg.pkl'
    save_path.parent.mkdir(parents=True, exist_ok=True)
    with open(save_path, 'wb') as knowledge_graph_file:
        pickle.dump(knowledge_graph, knowledge_graph_file)


def load_knowledge_graph(project_gutenberg_id, save_path):
    """Load a knowledge graph from a `pickle` file."""
    save_path = save_path / 'kg.pkl'
    with open(save_path, 'rb') as knowledge_graph_file:
        knowledge_graph = pickle.load(knowledge_graph_file)
    return knowledge_graph


def display_knowledge_graph(knowledge_graph, save_path):
    """Display a knowledge graph using pyvis."""
    # Convert the knowledge graph into a format that can be displayed by pyvis.
    # Merge all edges with the same subject and object into a single edge.
    pyvis_graph = nx.MultiDiGraph()
    for node in knowledge_graph.nodes:
        pyvis_graph.add_node(str(node), label='\n'.join(node.names),
                             shape='box')
    for edge in knowledge_graph.edges(data=True):
        subject = str(edge[0])
        object_ = str(edge[1])
        predicate = edge[2]['predicate']
        chapter_index = edge[2]['chapter_index']
        if pyvis_graph.has_edge(subject, object_):
            pyvis_graph[subject][object_][0].update(
                title=(f'{pyvis_graph[subject][object_][0]["title"]}\n'
                       f'{predicate}')) # f'{predicate} ({chapter_index})'))
        else:
            pyvis_graph.add_edge(subject, object_,
                                 title=f'{predicate}') # title=f'{predicate} ({chapter_index})')
    network = Network(height='99vh', directed=True, bgcolor='#262626',
                      cdn_resources='remote')
    network.set_options('''
    const options = {
        "interaction": {
            "tooltipDelay": 0
        },
        "physics": {
            "forceAtlas2Based": {
                "gravitationalConstant": -50,
                "centralGravity": 0.01,
                "springLength": 100,
                "springConstant": 0.08,
                "damping": 0.4,
                "avoidOverlap": 0
            },
            "solver": "forceAtlas2Based"
        }
    }''')
    network.from_nx(pyvis_graph)
    save_path.parent.mkdir(parents=True, exist_ok=True)
    # `show()` tries to print the name of the HTML file to the console, so
    # suppress it.
    with redirect_stdout(None):
        network.show(str(save_path), notebook=False)
    logger.info(f'Saved pyvis knowledge graph to {save_path}.')

def fuse_subject(subjects):
    subject_list = subjects.split('/')
    if len(subject_list) == 1:
        return subject_list[0]
    flag = 0
    striped_subject_list = []
    len_list = []
    for subject in subject_list:
        striped_subject_list.append(subject.strip())
        len_list.append(len(subject))
    idx = np.argmin(len_list)
    for subject in striped_subject_list:
        if striped_subject_list[idx] in subject:
            flag += 1

    if flag == len(striped_subject_list):
        return striped_subject_list[idx]
    else:
        return subjects

def init_kg(script, idx, response_list):
    """
    Generate knowledge graphs for book in the books dataset using saved
    responses from the OpenAI API.
    """
    knowledge_graph = generate_knowledge_graph_for_scripts(script, idx, response_list)
    return knowledge_graph

def refine_kg(knowledge_graph, idx, topk):
    result = []
    edge_count = Counter()
    for edge in knowledge_graph.edges(data=True):
        subject = str(edge[0])
        object_ = str(edge[1])
        edge_count[subject] += 1
        edge_count[object_] += 1

    # μ—£μ§€κ°€ λ§Žμ€ μƒμœ„ k개의 λ…Έλ“œ 선택
    top_k_nodes = [node for node, count in edge_count.most_common(topk)]

    # μƒμœ„ k개 λ…Έλ“œ κ°„μ˜ λͺ¨λ“  관계λ₯Ό μˆ˜μ§‘
    rel_dict = {}
    for edge in knowledge_graph.edges(data=True):
        subject = str(edge[0])
        object_ = str(edge[1])
        if subject in top_k_nodes and object_ in top_k_nodes:
            predicate = edge[2]['predicate']
            chapter_index = edge[2]['chapter_index']
            count = edge[2]['count']
            key = f"{subject}\t{object_}"
            if key not in rel_dict:
                rel_dict[key] = []
            rel_dict[key].append((predicate, chapter_index, count))

    # μ‹œκ°ν™” μ½”λ“œ
    pyvis_graph = nx.MultiDiGraph()
    for node in top_k_nodes:
        pyvis_graph.add_node(node, label=node, shape='box')

    for key, relations in rel_dict.items():
        subject, object_ = key.split('\t')
        for relation in relations:
            predicate, chapter_index, count = relation
            if 'output' in predicate:
                continue
            if count >= 2:
                if pyvis_graph.has_edge(subject, object_):
                    pyvis_graph[subject][object_][0]['title'] += f', {predicate}'
                else:
                    pyvis_graph.add_edge(subject, object_, title=f'{predicate}')

    network = Network(height='99vh', directed=True, bgcolor='#262626', cdn_resources='remote')
    network.from_nx(pyvis_graph)

    with redirect_stdout(None):
        network.show('refined_kg.html', notebook=False)

    for key, relations in rel_dict.items():
        subject, object_ = key.split('\t')
        
        for relation in relations:
            predicate, chapter_index, count = relation
            
            if 'output' in predicate:
                continue

            subject = fuse_subject(subject)
            object_ = fuse_subject(object_)

            relationship = {
                'subject': subject,
                'predicate': predicate,
                'object': object_,
                'chapter_index': chapter_index,
                'count': count,
                'subject_node_count': edge_count[subject],
                'object_node_count': edge_count[object_] 
            }

            if count >= 2:
                result.append(relationship)
    
    return result