create models.py
Browse files
models.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from transformers import PreTrainedModel
|
4 |
+
|
5 |
+
class CustomClassifier(PreTrainedModel):
|
6 |
+
config_class = CustomClassificationConfig
|
7 |
+
|
8 |
+
def __init__(self, config):
|
9 |
+
super().__init__(config)
|
10 |
+
self.encoder = nn.Sequential(
|
11 |
+
nn.Linear(config.input_dim, config.hidden_dim),
|
12 |
+
nn.ReLU(),
|
13 |
+
nn.Linear(config.hidden_dim, config.hidden_dim),
|
14 |
+
nn.ReLU(),
|
15 |
+
)
|
16 |
+
self.classifier = nn.Linear(config.hidden_dim, config.num_classes)
|
17 |
+
|
18 |
+
def forward(self, input_ids=None, labels=None, **kwargs):
|
19 |
+
# input_ids: shape (batch_size, input_dim)
|
20 |
+
hidden = self.encoder(input_ids)
|
21 |
+
logits = self.classifier(hidden)
|
22 |
+
|
23 |
+
loss = None
|
24 |
+
if labels is not None:
|
25 |
+
loss_fn = nn.CrossEntropyLoss()
|
26 |
+
loss = loss_fn(logits, labels)
|
27 |
+
|
28 |
+
return {"loss": loss, "logits": logits}
|