create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoConfig
|
4 |
+
from your_model_code import CustomClassifier
|
5 |
+
|
6 |
+
MODEL_ID = "your-username/custom-classifier-demo"
|
7 |
+
config = AutoConfig.from_pretrained(MODEL_ID)
|
8 |
+
model = CustomClassifier.from_pretrained(MODEL_ID)
|
9 |
+
model.eval()
|
10 |
+
|
11 |
+
def predict(input_csv: str):
|
12 |
+
vec = [float(x) for x in input_csv.split(",")]
|
13 |
+
if len(vec) != config.input_dim:
|
14 |
+
return f"Error: Need {config.input_dim} floats"
|
15 |
+
x = torch.tensor([vec])
|
16 |
+
with torch.no_grad():
|
17 |
+
logits = model(input_ids=x)["logits"]
|
18 |
+
pred = logits.argmax(dim=-1).item()
|
19 |
+
return f"Predicted class: {pred}"
|
20 |
+
|
21 |
+
demo = gr.Interface(
|
22 |
+
fn=predict,
|
23 |
+
inputs=gr.Textbox(label="Input Vector (comma-separated)"),
|
24 |
+
outputs="text",
|
25 |
+
title="Custom Classifier Demo",
|
26 |
+
)
|
27 |
+
demo.launch()
|