Spaces:
Sleeping
Sleeping
files
Browse files- BERTmodel.py +55 -10
- DISTILLBERTmodel.py +53 -6
- ROBERTAmodel.py +46 -5
- server.py +16 -12
BERTmodel.py
CHANGED
@@ -10,7 +10,7 @@ from transformers import (
|
|
10 |
BertForSequenceClassification,
|
11 |
)
|
12 |
import torch.nn.functional as F
|
13 |
-
|
14 |
|
15 |
CACHE_DIR = "./hf_cache"
|
16 |
|
@@ -18,22 +18,67 @@ CACHE_DIR = "./hf_cache"
|
|
18 |
class BERTVisualizer(TransformerVisualizer):
|
19 |
def __init__(self,task):
|
20 |
super().__init__()
|
21 |
-
print(task,'BERTVIS START')
|
22 |
self.task = task
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
print('finding model', self.task)
|
25 |
if self.task == 'mlm':
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
31 |
elif self.task == 'sst':
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
elif self.task == 'mnli':
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
else:
|
36 |
raise ValueError(f"Unsupported task: {self.task}")
|
|
|
|
|
|
|
37 |
print('model found')
|
38 |
#self.model.to(self.device)
|
39 |
print('self device junk')
|
|
|
10 |
BertForSequenceClassification,
|
11 |
)
|
12 |
import torch.nn.functional as F
|
13 |
+
import os
|
14 |
|
15 |
CACHE_DIR = "./hf_cache"
|
16 |
|
|
|
18 |
class BERTVisualizer(TransformerVisualizer):
|
19 |
def __init__(self,task):
|
20 |
super().__init__()
|
|
|
21 |
self.task = task
|
22 |
+
print(task,'BERTVIS START')
|
23 |
+
|
24 |
+
TOKENIZER = 'bert-base-uncased'
|
25 |
+
LOCAL_PATH = os.path.join(CACHE_DIR, "tokenizers",TOKENIZER.replace("/", "_"))
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
try:
|
30 |
+
self.tokenizer = BertTokenizer.from_pretrained(LOCAL_PATH, local_files_only=True)
|
31 |
+
except Exception as e:
|
32 |
+
self.tokenizer = BertTokenizer.from_pretrained(TOKENIZER)
|
33 |
+
self.tokenizer.save_pretrained(LOCAL_PATH)
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
print('finding model', self.task)
|
38 |
if self.task == 'mlm':
|
39 |
+
|
40 |
+
MODEL = 'bert-base-uncased'
|
41 |
+
LOCAL_PATH = os.path.join(CACHE_DIR, "models",MODEL.replace("/", "_"))
|
42 |
+
|
43 |
+
try:
|
44 |
+
self.model = BertForMaskedLM.from_pretrained( LOCAL_PATH, local_files_only=True, attn_implementation="eager" ).to(self.device)
|
45 |
+
except Exception as e:
|
46 |
+
self.model = BertForMaskedLM.from_pretrained( MODEL, attn_implementation="eager" ).to(self.device)
|
47 |
+
self.model.save_pretrained(LOCAL_PATH)
|
48 |
+
|
49 |
elif self.task == 'sst':
|
50 |
+
MODEL = "textattack/bert-base-uncased-SST-2"
|
51 |
+
LOCAL_PATH = os.path.join(CACHE_DIR, "models",MODEL.replace("/", "_"))
|
52 |
+
|
53 |
+
|
54 |
+
try:
|
55 |
+
self.model = BertForSequenceClassification.from_pretrained( LOCAL_PATH, local_files_only=True, device_map=None )
|
56 |
+
except Exception as e:
|
57 |
+
self.model = BertForSequenceClassification.from_pretrained( MODEL, device_map=None )
|
58 |
+
self.model.save_pretrained(LOCAL_PATH)
|
59 |
+
|
60 |
+
|
61 |
elif self.task == 'mnli':
|
62 |
+
MODEL = 'textattack/bert-base-uncased-MNLI'
|
63 |
+
|
64 |
+
|
65 |
+
LOCAL_PATH = os.path.join(CACHE_DIR, "models",MODEL.replace("/", "_"))
|
66 |
+
|
67 |
+
|
68 |
+
try:
|
69 |
+
self.model = BertForSequenceClassification.from_pretrained( LOCAL_PATH, local_files_only=True, device_map=None )
|
70 |
+
except Exception as e:
|
71 |
+
self.model = BertForSequenceClassification.from_pretrained( MODEL, device_map=None)
|
72 |
+
self.model.save_pretrained(LOCAL_PATH)
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
else:
|
78 |
raise ValueError(f"Unsupported task: {self.task}")
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
print('model found')
|
83 |
#self.model.to(self.device)
|
84 |
print('self device junk')
|
DISTILLBERTmodel.py
CHANGED
@@ -4,7 +4,6 @@ import torch.nn.functional as F
|
|
4 |
|
5 |
|
6 |
import os
|
7 |
-
from transformers import DistilBertModel, DistilBertTokenizer
|
8 |
from models import TransformerVisualizer
|
9 |
|
10 |
from transformers import (
|
@@ -17,17 +16,65 @@ class DistilBERTVisualizer(TransformerVisualizer):
|
|
17 |
def __init__(self, task):
|
18 |
super().__init__()
|
19 |
self.task = task
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
if self.task == 'mlm':
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
elif self.task == 'sst':
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
elif self.task == 'mnli':
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
|
|
28 |
|
29 |
else:
|
30 |
-
raise
|
|
|
|
|
|
|
|
|
31 |
|
32 |
|
33 |
self.model.eval()
|
|
|
4 |
|
5 |
|
6 |
import os
|
|
|
7 |
from models import TransformerVisualizer
|
8 |
|
9 |
from transformers import (
|
|
|
16 |
def __init__(self, task):
|
17 |
super().__init__()
|
18 |
self.task = task
|
19 |
+
|
20 |
+
|
21 |
+
TOKENIZER = 'distilbert-base-uncased'
|
22 |
+
LOCAL_PATH = os.path.join(CACHE_DIR, "tokenizers",TOKENIZER.replace("/", "_"))
|
23 |
+
|
24 |
+
try:
|
25 |
+
self.tokenizer = DistilBertTokenizer.from_pretrained(LOCAL_PATH, local_files_only=True)
|
26 |
+
except Exception as e:
|
27 |
+
self.tokenizer = DistilBertTokenizer.from_pretrained(TOKENIZER)
|
28 |
+
self.tokenizer.save_pretrained(LOCAL_PATH)
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
print('finding model', self.task)
|
33 |
if self.task == 'mlm':
|
34 |
+
|
35 |
+
MODEL = 'distilbert-base-uncased'
|
36 |
+
LOCAL_PATH = os.path.join(CACHE_DIR, "models",MODEL.replace("/", "_"))
|
37 |
+
|
38 |
+
try:
|
39 |
+
self.model = DistilBertForMaskedLM.from_pretrained( LOCAL_PATH, local_files_only=True )
|
40 |
+
except Exception as e:
|
41 |
+
self.model = DistilBertForMaskedLM.from_pretrained( MODEL )
|
42 |
+
self.model.save_pretrained(LOCAL_PATH)
|
43 |
+
|
44 |
elif self.task == 'sst':
|
45 |
+
MODEL = 'distilbert-base-uncased-finetuned-sst-2-english'
|
46 |
+
LOCAL_PATH = os.path.join(CACHE_DIR, "models",MODEL.replace("/", "_"))
|
47 |
+
|
48 |
+
|
49 |
+
try:
|
50 |
+
self.model = DistilBertForSequenceClassification.from_pretrained( LOCAL_PATH, local_files_only=True )
|
51 |
+
except Exception as e:
|
52 |
+
self.model = DistilBertForSequenceClassification.from_pretrained( MODEL )
|
53 |
+
self.model.save_pretrained(LOCAL_PATH)
|
54 |
+
|
55 |
+
|
56 |
elif self.task == 'mnli':
|
57 |
+
MODEL = "textattack/distilbert-base-uncased-MNLI"
|
58 |
+
|
59 |
+
|
60 |
+
LOCAL_PATH = os.path.join(CACHE_DIR, "models",MODEL.replace("/", "_"))
|
61 |
+
|
62 |
+
|
63 |
+
try:
|
64 |
+
self.model = DistilBertForSequenceClassification.from_pretrained( LOCAL_PATH, local_files_only=True)
|
65 |
+
except Exception as e:
|
66 |
+
self.model = DistilBertForSequenceClassification.from_pretrained( MODEL)
|
67 |
+
self.model.save_pretrained(LOCAL_PATH)
|
68 |
+
|
69 |
|
70 |
+
|
71 |
|
72 |
else:
|
73 |
+
raise ValueError(f"Unsupported task: {self.task}")
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
|
79 |
|
80 |
self.model.eval()
|
ROBERTAmodel.py
CHANGED
@@ -5,19 +5,60 @@ from models import TransformerVisualizer
|
|
5 |
from transformers import (
|
6 |
RobertaForMaskedLM, RobertaForSequenceClassification
|
7 |
)
|
8 |
-
|
9 |
CACHE_DIR = "./hf_cache"
|
10 |
class RoBERTaVisualizer(TransformerVisualizer):
|
11 |
def __init__(self, task):
|
12 |
super().__init__()
|
13 |
self.task = task
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
if self.task == 'mlm':
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
elif self.task == 'sst':
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
elif self.task == 'mnli':
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
|
23 |
self.model.to(self.device)
|
|
|
5 |
from transformers import (
|
6 |
RobertaForMaskedLM, RobertaForSequenceClassification
|
7 |
)
|
8 |
+
import os
|
9 |
CACHE_DIR = "./hf_cache"
|
10 |
class RoBERTaVisualizer(TransformerVisualizer):
|
11 |
def __init__(self, task):
|
12 |
super().__init__()
|
13 |
self.task = task
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
TOKENIZER = 'roberta-base'
|
18 |
+
LOCAL_PATH = os.path.join(CACHE_DIR, "tokenizers",TOKENIZER.replace("/", "_"))
|
19 |
+
|
20 |
+
try:
|
21 |
+
self.tokenizer = RobertaTokenizer.from_pretrained(LOCAL_PATH, local_files_only=True)
|
22 |
+
except Exception as e:
|
23 |
+
self.tokenizer = RobertaTokenizer.from_pretrained(TOKENIZER)
|
24 |
+
self.tokenizer.save_pretrained(LOCAL_PATH)
|
25 |
+
|
26 |
if self.task == 'mlm':
|
27 |
+
|
28 |
+
MODEL = "roberta-base"
|
29 |
+
LOCAL_PATH = os.path.join(CACHE_DIR, "models",MODEL.replace("/", "_"))
|
30 |
+
|
31 |
+
try:
|
32 |
+
self.model = RobertaForMaskedLM.from_pretrained( LOCAL_PATH, local_files_only=True )
|
33 |
+
except Exception as e:
|
34 |
+
self.model = RobertaForMaskedLM.from_pretrained( MODEL )
|
35 |
+
self.model.save_pretrained(LOCAL_PATH)
|
36 |
+
|
37 |
elif self.task == 'sst':
|
38 |
+
|
39 |
+
|
40 |
+
MODEL = 'textattack/roberta-base-SST-2'
|
41 |
+
LOCAL_PATH = os.path.join(CACHE_DIR, "models",MODEL.replace("/", "_"))
|
42 |
+
|
43 |
+
try:
|
44 |
+
self.model = RobertaForSequenceClassification.from_pretrained( LOCAL_PATH, local_files_only=True )
|
45 |
+
except Exception as e:
|
46 |
+
self.model = RobertaForSequenceClassification.from_pretrained( MODEL )
|
47 |
+
self.model.save_pretrained(LOCAL_PATH)
|
48 |
+
|
49 |
+
|
50 |
elif self.task == 'mnli':
|
51 |
+
MODEL = "roberta-large-mnli"
|
52 |
+
LOCAL_PATH = os.path.join(CACHE_DIR, "models",MODEL.replace("/", "_"))
|
53 |
+
|
54 |
+
|
55 |
+
try:
|
56 |
+
self.model = RobertaForSequenceClassification.from_pretrained( LOCAL_PATH, local_files_only=True)
|
57 |
+
except Exception as e:
|
58 |
+
self.model = RobertaForSequenceClassification.from_pretrained( MODEL)
|
59 |
+
self.model.save_pretrained(LOCAL_PATH)
|
60 |
+
|
61 |
+
|
62 |
|
63 |
|
64 |
self.model.to(self.device)
|
server.py
CHANGED
@@ -9,18 +9,6 @@ from ROBERTAmodel import *
|
|
9 |
from BERTmodel import *
|
10 |
from DISTILLBERTmodel import *
|
11 |
|
12 |
-
import shutil
|
13 |
-
import os
|
14 |
-
|
15 |
-
CACHE_DIR = "./hf_cache"
|
16 |
-
if os.path.exists(CACHE_DIR):
|
17 |
-
try:
|
18 |
-
shutil.rmtree(CACHE_DIR)
|
19 |
-
print("✅ Cleared hf_cache directory")
|
20 |
-
except Exception as e:
|
21 |
-
print("❌ Failed to clear hf_cache:", e)
|
22 |
-
|
23 |
-
|
24 |
VISUALIZER_CLASSES = {
|
25 |
"BERT": BERTVisualizer,
|
26 |
"RoBERTa": RoBERTaVisualizer,
|
@@ -229,3 +217,19 @@ def get_grad_attn_matrix(req: GradAttnModelRequest):
|
|
229 |
return {"error": str(e)}
|
230 |
|
231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
from BERTmodel import *
|
10 |
from DISTILLBERTmodel import *
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
VISUALIZER_CLASSES = {
|
13 |
"BERT": BERTVisualizer,
|
14 |
"RoBERTa": RoBERTaVisualizer,
|
|
|
217 |
return {"error": str(e)}
|
218 |
|
219 |
|
220 |
+
if __name__ == "__main__":
|
221 |
+
|
222 |
+
print('rim ')
|
223 |
+
BERTVisualizer('mlm')
|
224 |
+
BERTVisualizer('mnli')
|
225 |
+
BERTVisualizer('sst')
|
226 |
+
|
227 |
+
|
228 |
+
RoBERTaVisualizer('mlm')
|
229 |
+
RoBERTaVisualizer('mnli')
|
230 |
+
RoBERTaVisualizer('sst')
|
231 |
+
|
232 |
+
|
233 |
+
DistilBERTVisualizer('mlm')
|
234 |
+
DistilBERTVisualizer('mnli')
|
235 |
+
DistilBERTVisualizer('sst')
|