File size: 5,051 Bytes
1b80e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
import torch.nn as nn
import torch.nn.functional as F
from model.warplayer import warp
# from train_log.refine import *

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
    return nn.Sequential(
        nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
                  padding=padding, dilation=dilation, bias=True),        
        nn.LeakyReLU(0.2, True)
    )

def conv_bn(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
    return nn.Sequential(
        nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
                  padding=padding, dilation=dilation, bias=False),
        nn.BatchNorm2d(out_planes),
        nn.LeakyReLU(0.2, True)
    )
    
class ResConv(nn.Module):
    def __init__(self, c, dilation=1):
        super(ResConv, self).__init__()
        self.conv = nn.Conv2d(c, c, 3, 1, dilation, dilation=dilation, groups=1\
)
        self.beta = nn.Parameter(torch.ones((1, c, 1, 1)), requires_grad=True)
        self.relu = nn.LeakyReLU(0.2, True)

    def forward(self, x):
        return self.relu(self.conv(x) * self.beta + x)

class IFBlock(nn.Module):
    def __init__(self, in_planes, c=64):
        super(IFBlock, self).__init__()
        self.conv0 = nn.Sequential(
            conv(in_planes, c//2, 3, 2, 1),
            conv(c//2, c, 3, 2, 1),
            )
        self.convblock = nn.Sequential(
            ResConv(c),
            ResConv(c),
            ResConv(c),
            ResConv(c),
            ResConv(c),
            ResConv(c),
            ResConv(c),
            ResConv(c),
        )
        self.lastconv = nn.Sequential(
            nn.ConvTranspose2d(c, 4*6, 4, 2, 1),
            nn.PixelShuffle(2)
        )

    def forward(self, x, flow=None, scale=1):
        x = F.interpolate(x, scale_factor= 1. / scale, mode="bilinear", align_corners=False)
        if flow is not None:
            flow = F.interpolate(flow, scale_factor= 1. / scale, mode="bilinear", align_corners=False) * 1. / scale
            x = torch.cat((x, flow), 1)
        feat = self.conv0(x)
        feat = self.convblock(feat)
        tmp = self.lastconv(feat)
        tmp = F.interpolate(tmp, scale_factor=scale, mode="bilinear", align_corners=False)
        flow = tmp[:, :4] * scale
        mask = tmp[:, 4:5]
        return flow, mask
        
class IFNet(nn.Module):
    def __init__(self):
        super(IFNet, self).__init__()
        self.block0 = IFBlock(7+8, c=192)
        self.block1 = IFBlock(8+4+8, c=128)
        self.block2 = IFBlock(8+4+8, c=96)
        self.block3 = IFBlock(8+4+8, c=64)
        self.encode = nn.Sequential(
            nn.Conv2d(3, 16, 3, 2, 1),
            nn.ConvTranspose2d(16, 4, 4, 2, 1)
        )
        # self.contextnet = Contextnet()
        # self.unet = Unet()

    def forward(self, x, timestep=0.5, scale_list=[8, 4, 2, 1], training=False, fastmode=True, ensemble=False):
        if ensemble:
            print('ensemble is removed')
        if training == False:
            channel = x.shape[1] // 2
            img0 = x[:, :channel]
            img1 = x[:, channel:]
        if not torch.is_tensor(timestep):
            timestep = (x[:, :1].clone() * 0 + 1) * timestep
        else:
            timestep = timestep.repeat(1, 1, img0.shape[2], img0.shape[3])
        f0 = self.encode(img0[:, :3])
        f1 = self.encode(img1[:, :3])
        flow_list = []
        merged = []
        mask_list = []
        warped_img0 = img0
        warped_img1 = img1
        flow = None
        mask = None
        loss_cons = 0
        block = [self.block0, self.block1, self.block2, self.block3]
        for i in range(4):
            if flow is None:
                flow, mask = block[i](torch.cat((img0[:, :3], img1[:, :3], f0, f1, timestep), 1), None, scale=scale_list[i])
            else:
                fd, mask = block[i](torch.cat((warped_img0[:, :3], warped_img1[:, :3], warp(f0, flow[:, :2]), warp(f1, flow[:, 2:4]), timestep, mask), 1), flow, scale=scale_list[i])
                flow = flow + fd
            mask_list.append(mask)
            flow_list.append(flow)
            warped_img0 = warp(img0, flow[:, :2])
            warped_img1 = warp(img1, flow[:, 2:4])
            merged.append((warped_img0, warped_img1))
        mask = torch.sigmoid(mask)
        merged[3] = (warped_img0 * mask + warped_img1 * (1 - mask))
        if not fastmode:
            print('contextnet is removed')
            '''

            c0 = self.contextnet(img0, flow[:, :2])

            c1 = self.contextnet(img1, flow[:, 2:4])

            tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)

            res = tmp[:, :3] * 2 - 1

            merged[3] = torch.clamp(merged[3] + res, 0, 1)

            '''
        return flow_list, mask_list[3], merged