File size: 12,898 Bytes
1b80e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import torch 
import numpy as np
from PIL import Image, ImageOps, ImageEnhance
import cv2
MAX_RESOLUTION = 4096


def tensor2pil(image):
    return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8))

# Adapt from https://github.com/sipherxyz/comfyui-art-venture
def color_correct(

        image,

        temperature: float,

        hue: float,

        brightness: float,

        contrast: float,

        saturation: float,

        gamma: float,

    ):
    
   

        brightness /= 100
        contrast /= 100
        saturation /= 100
        temperature /= 100

        brightness = 1 + brightness
        contrast = 1 + contrast
        saturation = 1 + saturation


        modified_image = image

 

    

        # brightness
        modified_image = ImageEnhance.Brightness(modified_image).enhance(brightness)

        # contrast
        modified_image = ImageEnhance.Contrast(modified_image).enhance(contrast)
        modified_image = np.array(modified_image).astype(np.float32)

        # temperature
        if temperature > 0:
            modified_image[:, :, 0] *= 1 + temperature
            modified_image[:, :, 1] *= 1 + temperature * 0.4
        elif temperature < 0:
            modified_image[:, :, 2] *= 1 - temperature
        modified_image = np.clip(modified_image, 0, 255) / 255

        # gamma
        modified_image = np.clip(np.power(modified_image, gamma), 0, 1)

        # saturation
        hls_img = cv2.cvtColor(modified_image, cv2.COLOR_RGB2HLS)
        hls_img[:, :, 2] = np.clip(saturation * hls_img[:, :, 2], 0, 1)
        modified_image = cv2.cvtColor(hls_img, cv2.COLOR_HLS2RGB) * 255

        # hue
        hsv_img = cv2.cvtColor(modified_image, cv2.COLOR_RGB2HSV)
        hsv_img[:, :, 0] = (hsv_img[:, :, 0] + hue) % 360
        modified_image = cv2.cvtColor(hsv_img, cv2.COLOR_HSV2RGB)

     

        modified_image = modified_image.astype(np.uint8)
        #modified_image = modified_image / 255
       
        #modified_image = torch.from_numpy(modified_image).unsqueeze(0)
     

        return modified_image




def extract_pixels(image, side, num_pixels):
 

    # Ottieni le dimensioni dell'immagine
    width, height = image.size

    # Determina la regione di ritaglio in base al lato specificato
    if side == "l":
        crop_box = (0, 0, num_pixels, height)
    elif side == "r":
        crop_box = (width - num_pixels, 0, width, height)
    elif side == "t":
        crop_box = (0, 0, width, num_pixels)
    elif side == "b":
        crop_box = (0, height - num_pixels, width, height)
    else:
        raise ValueError("Il lato specificato non Γ¨ valido. Utilizzare 'sinistro', 'destro', 'alto' o 'basso'.")

    # Esegui il ritaglio dell'immagine
    cropped_image = image.crop(crop_box)

    return cropped_image


from PIL import Image



def make_pixelated(image, pixel_size):
    if pixel_size > image.width or pixel_size > image.height:
        raise ValueError("Top, bottom, left, and right padding must higher than the pixel_size!")

    small_image = image.resize((image.width // pixel_size, image.height // pixel_size),   Image.Resampling.NEAREST)

    pixelated_image = small_image.resize(image.size,   Image.Resampling.NEAREST)

    return pixelated_image



def flip_and_stretch(image, flip_direction, stretch_value):

    # Inverti l'immagine in base alla direzione specificata
     # Calcola le nuove dimensioni dell'immagine con stretching
    original_width, original_height = image.size

    if flip_direction == "h":
        flipped_image = image.transpose(Image.Transpose.FLIP_LEFT_RIGHT)
        stretched_height = original_height
        stretched_width = stretch_value
    elif flip_direction == "v":
        flipped_image = image.transpose(Image.Transpose.FLIP_TOP_BOTTOM)
        stretched_width = original_width
        stretched_height = stretch_value
    else:
        raise ValueError("La direzione specificata non Γ¨ valida. Utilizzare 'orizzontale' o 'verticale'.")

   
    
    

    # "Stretcha" l'immagine alle nuove dimensioni
    stretched_image = flipped_image.resize((stretched_width, stretched_height))

    return stretched_image


def create_noise_image(width, height):

    noise_array = np.random.randint(0, 256, (height, width, 3), dtype=np.uint8)

    # Crea un'immagine PIL utilizzando i valori dei pixel generati
    noise_image = Image.fromarray(noise_array)

    return noise_image


def blend_images(image1, image2, blend_percentage):



    # Assicurati che le due immagini abbiano le stesse dimensioni
    if image1.size != image2.size:
        raise ValueError("Le dimensioni delle due immagini devono essere uguali.")

    # Blend delle due immagini in base alla percentuale specificata
    blended_image = Image.blend(image1, image2, blend_percentage)

    return blended_image


def image_paste(main_image, image_to_paste,side):


    # Ottieni le dimensioni delle immagini
    width_main, height_main = main_image.size
    width_paste, height_paste  = image_to_paste.size




    # Calcola le coordinate di incollaggio in base alla posizione desiderata
    if side == "t":
        # Crea una nuova immagine che sarΓ  la combinazione delle due immagini
        new_width = width_main
        new_height = height_main + height_paste

        new_image = Image.new("RGB", (new_width, new_height))
        new_image.paste(image_to_paste, (0,0))
        new_image.paste(main_image, (0,height_paste))
    
    elif side == "b":
        new_width = width_main
        new_height = height_main + height_paste

        new_image = Image.new("RGB", (new_width, new_height))
        new_image.paste(image_to_paste, (0,height_main)) 
        new_image.paste(main_image, (0,0))
    
    elif side == "r":
        new_width = width_main + width_paste
        new_height = height_main
        new_image = Image.new("RGB", (new_width, new_height))
        new_image.paste(image_to_paste, (width_main, 0))
        new_image.paste(main_image, (0, 0))
    
        
    elif side == "l":
        new_width = width_main + width_paste
        new_height = height_main
      
        new_image = Image.new("RGB", (new_width, new_height))
        new_image.paste(image_to_paste, (0, 0))
        new_image.paste(main_image, (width_paste, 0))
    

    return new_image
  


def resize_image(image,noise,pixel_size, pixel_to_copy, left, right, top, bottom, temperature=5.0,hue=0,brightness=32,contrast=0,saturation=0,gamma=2):
    

    # RIGHT SIDE
    if right != 0:
        r_image = extract_pixels(image, "r", pixel_to_copy)
        r_image= flip_and_stretch(r_image, "h", right)
        r_image = make_pixelated(r_image, pixel_size)
        r_noise = create_noise_image(r_image.size[0], r_image.size[1])
        r_image = blend_images(r_image, r_noise, noise)
        r_image = color_correct(r_image, temperature,hue,brightness,contrast,saturation,gamma)
        r_image= Image.fromarray(r_image)

        r_image = image_paste(image, r_image,"r")
    else:
        r_image = image

    # LEFT SIDE
    if left != 0:
        l_image = extract_pixels(r_image, "l", pixel_to_copy)
        l_image = flip_and_stretch(l_image, "h", left)
        l_image = make_pixelated(l_image, pixel_size)
        l_noise = create_noise_image(l_image.size[0], l_image.size[1])
        l_image = blend_images(l_image, l_noise, noise)
        l_image = color_correct(l_image, temperature,hue,brightness,contrast,saturation,gamma)
        l_image= Image.fromarray(l_image)

        l_image = image_paste(r_image, l_image,"l")
    else:
        l_image = r_image

    # TOP
    if top != 0:
        t_image = extract_pixels(l_image, "t", pixel_to_copy)
        t_image = flip_and_stretch(t_image, "v", top)
        t_image = make_pixelated(t_image, pixel_size)
        t_noise = create_noise_image(t_image.size[0], t_image.size[1])
        t_image = blend_images(t_image, t_noise, noise)
        t_image = color_correct(t_image, temperature,hue,brightness,contrast,saturation,gamma)
        t_image= Image.fromarray(t_image)

        t_image = image_paste(l_image, t_image,"t")
    else:
        t_image = l_image

    # BOTTOM
    if bottom != 0:
        b_image = extract_pixels(t_image, "b", pixel_to_copy)
        b_image = flip_and_stretch(b_image, "v", bottom)
        b_image = make_pixelated(b_image, pixel_size)
        b_noise = create_noise_image(b_image.size[0], b_image.size[1])
        b_image = blend_images(b_image, b_noise, noise)
        b_image = color_correct(b_image, temperature,hue,brightness,contrast,saturation,gamma)
        b_image= Image.fromarray(b_image)
        
        b_image = image_paste(t_image, b_image,"b")
    else:
        b_image = t_image

    



    final_image = b_image

    return final_image


  


class ImagePadForOutpaintAdvanced:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "noise": ("FLOAT", {"default": 0.1, "min": 0, "max": 1.0, "step": 0.01}),
                "pixel_size": ("INT", {"default": 8, "min": 8, "max": 64, "step": 8}),
                "pixel_to_copy": ("INT", {"default": 32, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
                "temperature": ("FLOAT",{"default": 0, "min": -100, "max": 100, "step": 5},),
                "hue": ("FLOAT", {"default": 0, "min": -90, "max": 90, "step": 5}),
                "brightness": ("FLOAT",{"default": 0, "min": -100, "max": 100, "step": 5},),
                "contrast": ("FLOAT",{"default": 0, "min": -100, "max": 100, "step": 5},),
                "saturation": ("FLOAT",{"default": 0, "min": -100, "max": 100, "step": 5},),
                "gamma": ("FLOAT", {"default": 1, "min": 0.2, "max": 2.2, "step": 0.1}),
            },
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"
    

    def expand_image(self,image,feathering,noise,pixel_size, pixel_to_copy, left, right, top, bottom, temperature=5.0,hue=0,brightness=32,contrast=0,saturation=0,gamma=2):
        d1, d2, d3, d4 = image.size()
   

        #new_image = torch.zeros(
        #    (d1, d2 + top + bottom, d3 + left + right, d4),
        #    dtype=torch.float32,
        #)
        #new_image[:, top:top + d2, left:left + d3, :] = image

        image = tensor2pil(image)
        #image = Image.fromarray(image.astype(np.uint8))
        
        new_image = resize_image(image,noise,pixel_size, pixel_to_copy, left, right, top, bottom, temperature,hue,brightness,contrast,saturation,gamma)



        i = ImageOps.exif_transpose(new_image)
        image = i.convert("RGB")
        image = np.array(image).astype(np.float32) / 255.0
        new_image = torch.from_numpy(image)[None,]




        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )

        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t

        return (new_image, mask)
    

# A dictionary that contains all nodes you want to export with their names
# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
    "ImagePadForOutpaintAdvanced [n-suite]": ImagePadForOutpaintAdvanced
}

# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
    "ImagePadForOutpaintAdvanced [n-suite]": "Image Pad For Outpainting Advanced [πŸ…-πŸ…’πŸ…€πŸ…˜πŸ…£πŸ…”]"
}