Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,919 Bytes
1b80e0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import os
import cv2
import sys
import torch
import argparse
from PIL import Image, ImageOps
import folder_paths
import numpy as np
from tqdm import tqdm
from torch.nn import functional as F
import _thread
from queue import Queue, Empty
from pathlib import Path
def image_preprocessing(i):
i = ImageOps.exif_transpose(i)
image = i.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
return image
class LoadImageFromFolder:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {"required": { "folder":("STRING", {"default": ""} ),
"fps":("INT", {"default": 30})
}}
RETURN_TYPES = ("IMAGE","INT","INT","INT","STRING","STRING",)
RETURN_NAMES = ("IMAGES","MAX WIDTH","MAX HEIGHT","IMAGE COUNT","PATH","IMAGE LIST")
FUNCTION = "load_images"
OUTPUT_IS_LIST = (True,False,False,False,False,False,)
CATEGORY = "N-Suite/Experimental"
def load_images(self, folder,fps):
image_list = []
image_names = []
max_width = 0
max_height = 0
frame_count = 0
images = [os.path.join(folder, filename) for filename in os.listdir(folder) if filename.endswith(".png") or filename.endswith(".jpg")]
for image_path in images:
#get image name
image_names.append(image_path.split("/")[-1])
image = Image.open(image_path)
width, height = image.size
max_width = max(max_width, width)
max_height = max(max_height, height)
image_list.append((image_preprocessing(image)))
frame_count += 1
image_names_final='\n'.join(image_names)
print (f"Details: {frame_count} frames, {max_width}x{max_height}")
return (image_list, max_width, max_height,frame_count,folder,image_names_final,)
class SaveCaptionsFromImageList:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {"required": { "folder":("STRING", {"default": ""} ),
"fps":("INT", {"default": 30})
}}
RETURN_TYPES = ("IMAGE","INT","INT","INT","STRING","STRING",)
RETURN_NAMES = ("IMAGES","MAX WIDTH","MAX HEIGHT","IMAGE COUNT","PATH","IMAGE LIST")
FUNCTION = "load_images"
OUTPUT_IS_LIST = (True,False,False,False,False,False,)
CATEGORY = "LJRE/Loader"
def load_images(self, folder,fps):
image_list = []
image_names = []
max_width = 0
max_height = 0
frame_count = 0
images = [os.path.join(folder, filename) for filename in os.listdir(folder) if filename.endswith(".png") or filename.endswith(".jpg")]
for image_path in images:
#get image name
image_names.append(image_path.split("/")[-1])
image = Image.open(image_path)
width, height = image.size
max_width = max(max_width, width)
max_height = max(max_height, height)
image_list.append((image_preprocessing(image)))
frame_count += 1
image_names_final='\n'.join(image_names)
print (f"Details: {frame_count} frames, {max_width}x{max_height}")
return (image_list, max_width, max_height,frame_count,folder,image_names_final,)
# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
"LoadImageFromFolder [n-suite]": LoadImageFromFolder,
}
# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
"LoadImageFromFolder [n-suite]": "Load Image From Folder [π
-π
’π
€π
π
£π
]"
}
|