Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,431 Bytes
1b80e0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 |
import torch
import folder_paths
from PIL import Image, ImageOps
import numpy as np
import safetensors.torch
import hashlib
import os
import cv2
import os
import imageio
import shutil
from moviepy.editor import VideoFileClip, AudioFileClip
import random
import math
import json
from comfy.cli_args import args
import time
import concurrent.futures
import skbuild
YELLOW = '\33[33m'
END = '\33[0m'
# Brutally copied from comfy_extras/nodes_rebatch.py and modified
class LatentRebatch:
@staticmethod
def get_batch(latents, list_ind, offset):
'''prepare a batch out of the list of latents'''
samples = latents[list_ind]['samples']
shape = samples.shape
mask = latents[list_ind]['noise_mask'] if 'noise_mask' in latents[list_ind] else torch.ones((shape[0], 1, shape[2]*8, shape[3]*8), device='cpu')
if mask.shape[-1] != shape[-1] * 8 or mask.shape[-2] != shape[-2]:
torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[-2]*8, shape[-1]*8), mode="bilinear")
if mask.shape[0] < samples.shape[0]:
mask = mask.repeat((shape[0] - 1) // mask.shape[0] + 1, 1, 1, 1)[:shape[0]]
if 'batch_index' in latents[list_ind]:
batch_inds = latents[list_ind]['batch_index']
else:
batch_inds = [x+offset for x in range(shape[0])]
return samples, mask, batch_inds
@staticmethod
def get_slices(indexable, num, batch_size):
'''divides an indexable object into num slices of length batch_size, and a remainder'''
slices = []
for i in range(num):
slices.append(indexable[i*batch_size:(i+1)*batch_size])
if num * batch_size < len(indexable):
return slices, indexable[num * batch_size:]
else:
return slices, None
@staticmethod
def slice_batch(batch, num, batch_size):
result = [LatentRebatch.get_slices(x, num, batch_size) for x in batch]
return list(zip(*result))
@staticmethod
def cat_batch(batch1, batch2):
if batch1[0] is None:
return batch2
result = [torch.cat((b1, b2)) if torch.is_tensor(b1) else b1 + b2 for b1, b2 in zip(batch1, batch2)]
return result
def rebatch(self, latents, batch_size):
batch_size = batch_size[0]
output_list = []
current_batch = (None, None, None)
processed = 0
for i in range(len(latents)):
# fetch new entry of list
#samples, masks, indices = self.get_batch(latents, i)
next_batch = self.get_batch(latents, i, processed)
processed += len(next_batch[2])
# set to current if current is None
if current_batch[0] is None:
current_batch = next_batch
# add previous to list if dimensions do not match
elif next_batch[0].shape[-1] != current_batch[0].shape[-1] or next_batch[0].shape[-2] != current_batch[0].shape[-2]:
sliced, _ = self.slice_batch(current_batch, 1, batch_size)
output_list.append({'samples': sliced[0][0], 'noise_mask': sliced[1][0], 'batch_index': sliced[2][0]})
current_batch = next_batch
# cat if everything checks out
else:
current_batch = self.cat_batch(current_batch, next_batch)
# add to list if dimensions gone above target batch size
if current_batch[0].shape[0] > batch_size:
num = current_batch[0].shape[0] // batch_size
sliced, remainder = self.slice_batch(current_batch, num, batch_size)
for i in range(num):
output_list.append({'samples': sliced[0][i], 'noise_mask': sliced[1][i], 'batch_index': sliced[2][i]})
current_batch = remainder
#add remainder
if current_batch[0] is not None:
sliced, _ = self.slice_batch(current_batch, 1, batch_size)
output_list.append({'samples': sliced[0][0], 'noise_mask': sliced[1][0], 'batch_index': sliced[2][0]})
#get rid of empty masks
for s in output_list:
if s['noise_mask'].mean() == 1.0:
del s['noise_mask']
return output_list
input_dir = os.path.join(folder_paths.get_input_directory(),"n-suite")
output_dir = os.path.join(folder_paths.get_output_directory(),"n-suite","frames_out")
temp_output_dir = os.path.join(folder_paths.get_temp_directory(),"n-suite","frames_out")
frames_output_dir = os.path.join(folder_paths.get_temp_directory(),"n-suite","frames")
videos_output_dir = os.path.join(folder_paths.get_output_directory(),"n-suite","videos")
audios_output_temp_dir = os.path.join(folder_paths.get_temp_directory(),"audio.mp3")
videos_output_temp_dir = os.path.join(folder_paths.get_temp_directory(),"video.mp4")
video_preview_output_temp_dir = os.path.join(folder_paths.get_output_directory(),"n-suite","videos")
_resize_type = ["none","width", "height"]
_framerate = ["original","half", "quarter"]
_choice = ["Yes", "No"]
try:
os.makedirs(input_dir)
except:
pass
try:
os.makedirs(output_dir)
except:
pass
try:
os.makedirs(temp_output_dir)
except:
pass
try:
os.makedirs(videos_output_dir)
except:
pass
try:
os.makedirs(frames_output_dir)
except:
pass
try:
os.makedirs(folder_paths.get_temp_directory())
except:
pass
def calc_resize_image(input_path, target_size, resize_by):
image = cv2.imread(input_path)
height, width = image.shape[:2]
if resize_by == 'width':
new_width = target_size
new_height = int(height * (target_size / width))
elif resize_by == 'height':
new_height = target_size
new_width = int(width * (target_size / height))
else:
new_height = height
new_width = width
return new_width, new_height
def calc_resize_image_from_ram(input_frame, target_size, resize_by):
height, width = input_frame.shape[:2]
if resize_by == 'width':
new_width = target_size
new_height = int(height * (target_size / width))
elif resize_by == 'height':
new_height = target_size
new_width = int(width * (target_size / height))
else:
new_height = height
new_width = width
return new_width, new_height
def resize_image(input_path, new_width, new_height):
image = cv2.imread(input_path)
height, width = image.shape[:2]
if height != new_height or width != new_width:
resized_image = cv2.resize(image, (new_width, new_height))
else:
resized_image = image
pil_image = Image.fromarray(cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB))
return pil_image
def resize_image_from_ram(image, new_width, new_height):
height, width = image.shape[:2]
if height != new_height or width != new_width:
resized_image = cv2.resize(image, (new_width, new_height))
else:
resized_image = image
pil_image = Image.fromarray(cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB))
return pil_image
def extract_frames_from_video(video_path, output_folder=None, target_fps=30, use_ram=True):
frames = []
list_files = []
cap = cv2.VideoCapture(video_path)
frame_count = 0
# Ottieni il framerate originale del video
original_fps = int(cap.get(cv2.CAP_PROP_FPS))
# Calcola il rapporto per ridurre il framerate
frame_skip_ratio = original_fps // target_fps
real_frame_count = 0
if not use_ram:
if output_folder is None:
raise ValueError("output_folder must be specified if use_ram is False")
if output_folder is not None:
os.makedirs(output_folder, exist_ok=True)
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
# Estrai solo ogni "frame_skip_ratio"-esimo fotogramma
if frame_count % frame_skip_ratio == 0:
if use_ram:
frames.append(frame)
else:
frame_filename = os.path.join(output_folder, f"{frame_count:07d}.png")
list_files.append(frame_filename)
cv2.imwrite(frame_filename, frame)
real_frame_count += 1
cap.release()
print(f"{real_frame_count} frames have been extracted from the video")
if use_ram:
return frames
else:
return list_files
def extract_frames_from_gif(gif_path, output_folder):
list_files = []
os.makedirs(output_folder, exist_ok=True)
gif_frames = imageio.mimread(gif_path, memtest=False)
frame_count = 0
for frame in gif_frames:
frame_count += 1
frame_filename = os.path.join(output_folder, f"{frame_count:07d}.png")
list_files.append(frame_filename)
cv2.imwrite(frame_filename, cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
print(f"{frame_count} frames have been extracted from the GIF and saved in {output_folder}")
return list_files
def get_output_filename(input_file_path, output_folder, file_extension,suffix="") :
existing_files = [f for f in os.listdir(output_folder)]
max_progressive = 0
for filename in existing_files:
parts_ext = filename.split(".")
parts = parts_ext[0]
if len(parts) > 2 and parts.isdigit():
progressive = int(parts)
max_progressive = max(max_progressive, progressive)
new_progressive = max_progressive + 1
new_filename = f"{new_progressive:07d}{suffix}{file_extension}"
return os.path.join(output_folder, new_filename), new_filename
def get_output_filename_video(input_file_path, output_folder, file_extension,suffix="") :
input_filename = os.path.basename(input_file_path)
input_filename_without_extension = os.path.splitext(input_filename)[0]
existing_files = [f for f in os.listdir(output_folder) if f.startswith(input_filename_without_extension)]
max_progressive = 0
for filename in existing_files:
parts_ext = filename.split(".")
parts = parts_ext[0].split("_")
if len(parts) == 2 and parts[1].isdigit():
progressive = int(parts[1])
max_progressive = max(max_progressive, progressive)
new_progressive = max_progressive + 1
new_filename = f"{input_filename_without_extension}_{new_progressive:02d}{suffix}{file_extension}"
return os.path.join(output_folder, new_filename), new_filename
def image_preprocessing(i):
i = ImageOps.exif_transpose(i)
image = i.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
return image
def create_video_from_frames(frame_folder, output_video, frame_rate = 30.0):
frame_filenames = [os.path.join(frame_folder, filename) for filename in os.listdir(frame_folder) if filename.endswith(".png")]
frame_filenames.sort(key=lambda f: int(''.join(filter(str.isdigit, f))))
first_frame = cv2.imread(frame_filenames[0])
height, width, layers = first_frame.shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_video, fourcc, frame_rate, (width, height))
for frame_filename in frame_filenames:
frame = cv2.imread(frame_filename)
out.write(frame)
out.release()
print(f"Frames have been successfully reassembled into {output_video}")
def create_gif_from_frames(frame_folder, output_gif):
frame_filenames = [os.path.join(frame_folder, filename) for filename in os.listdir(frame_folder) if filename.endswith(".png")]
frame_filenames.sort()
frames = [imageio.imread(frame_filename) for frame_filename in frame_filenames]
# imageio
imageio.mimsave(output_gif, frames, duration=0.1)
print(f"Frames have been successfully assembled into {output_gif}")
temp_dir= folder_paths.temp_directory
class LoadVideoAdvanced:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
return {"required": {"video": (sorted(files), ),
"local_url": ("STRING", {"default": ""} ),
"framerate": (_framerate, {"default": "original"} ),
"resize_by": (_resize_type,{"default": "none"} ),
"size": ("INT", {"default": 512, "min": 512, "step": 64}),
"images_limit": ("INT", {"default": 0, "min": 0, "step": 1}),
"batch_size": ("INT", {"default": 0, "min": 0, "step": 1}),
"starting_frame": ("INT", {"default": 0, "min": 0, "step": 1}),
"autoplay":("BOOLEAN",{"default": True} ),
"use_ram": ("BOOLEAN", {"default": False}),
},}
RETURN_TYPES = ("IMAGE","LATENT","STRING","INT","INT","INT","INT",)
OUTPUT_IS_LIST = (True, True, False, False,False,False,False, )
RETURN_NAMES = ("IMAGES","EMPTY LATENTS","METADATA","WIDTH","HEIGHT","META_FPS","META_N_FRAMES")
CATEGORY = "N-Suite/Video"
FUNCTION = "encode"
TYPE="N-Suite"
@staticmethod
def vae_encode_crop_pixels(pixels):
x = (pixels.shape[1] // 8) * 8
y = (pixels.shape[2] // 8) * 8
if pixels.shape[1] != x or pixels.shape[2] != y:
x_offset = (pixels.shape[1] % 8) // 2
y_offset = (pixels.shape[2] % 8) // 2
pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
return pixels
def load_video(self, video, framerate, local_url, use_ram):
file_path = folder_paths.get_annotated_filepath(os.path.join("n-suite", video))
cap = cv2.VideoCapture(file_path)
# Check if the video was opened successfully
if not cap.isOpened():
print("Unable to open the video.")
else:
# Get the FPS of the video
fps = int(cap.get(cv2.CAP_PROP_FPS))
print(f"The video has {fps} frames per second.")
try:
shutil.rmtree(os.path.join(temp_output_dir, video.split(".")[0]))
except:
print("Video Path already deleted")
full_temp_output_dir = os.path.join(temp_output_dir, video.split(".")[0])
# Set new framerate
if "half" in framerate:
fps = fps // 2
print(f"The video has been reduced to {fps} frames per second.")
elif "quarter" in framerate:
fps = fps // 4
print(f"The video has been reduced to {fps} frames per second.")
file_extension = os.path.splitext(file_path)[1].lower()
if file_extension in [".mp4", ".webm"]:
list_files = extract_frames_from_video(file_path, full_temp_output_dir, fps, use_ram)
audio_clip = VideoFileClip(file_path).audio
try:
# Save audio
audio_clip.write_audiofile(os.path.join(temp_output_dir, video.split(".")[0], "audio.mp3"))
except:
print("Could not save audio")
pass
elif file_extension == ".gif":
list_files = extract_frames_from_gif(file_path, output_dir)
else:
print("Format not supported. Please provide an MP4 or GIF file.")
return list_files, fps
def generate_latent(self, width, height, batch_size=1):
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
return {"samples": latent}
def process_image(self, args):
image, width, height, use_ram = args
# Funzione per ridimensionare e pre-elaborare un'immagine
if use_ram:
image = resize_image_from_ram(image, width, height)
else:
image = resize_image(image, width, height)
image = image_preprocessing(image)
return torch.tensor(image)
def encode(self, video, framerate, local_url, resize_by, size, images_limit, batch_size, starting_frame, autoplay, use_ram):
metadata = []
FRAMES, fps = self.load_video(video, framerate, local_url, use_ram)
max_frames = len(FRAMES)
if images_limit > 0 and starting_frame > 0:
images_limit += starting_frame
print(f"images_limit {images_limit}")
if starting_frame > max_frames:
starting_frame = max_frames - 1
print(f"WARNING: The starting frame is greater than the number of frames in the video. Only the last frame of the video will be used ({starting_frame}).")
if images_limit > max_frames:
images_limit = max_frames
print(f"WARNING: The number of images to extract is greater than the number of frames in the video. Images_limit has been reduced to the number of frames ({images_limit}).")
if batch_size > max_frames:
print(f"WARNING: The batch size is greater than the number of frames requested. Batch size has been reduced.")
batch_size = max_frames
if images_limit != 0 and batch_size > images_limit:
print(f"WARNING: The batch size is greater than the number of frames requested. Batch size has been reduced to the number of images_limit.")
batch_size = images_limit
pool_size = 5
i_list = []
final_count_frame = 0
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = []
if use_ram:
width, height = calc_resize_image_from_ram(FRAMES[0], size, resize_by)
else:
width, height = calc_resize_image(FRAMES[0], size, resize_by)
for batch_start in range(0, len(FRAMES), pool_size):
batch_images = FRAMES[batch_start:batch_start + pool_size]
if images_limit != 0 or starting_frame != 0:
try:
os.remove(os.path.join(temp_output_dir, video.split(".")[0], "audio.mp3"))
except:
pass
for idx, image in enumerate(batch_images):
if final_count_frame >= starting_frame and (final_count_frame < images_limit or images_limit == 0):
args = (image, width, height, use_ram)
futures.append(executor.submit(self.process_image, args))
final_count_frame += 1
concurrent.futures.wait(futures)
for future in futures:
batch_i_tensors = future.result()
i_list.extend(batch_i_tensors)
i_tensor = torch.stack(i_list, dim=0)
if images_limit != 0 or starting_frame != 0:
b_size = final_count_frame
else:
b_size = len(FRAMES)
latent = self.generate_latent(width, height, batch_size=b_size)
metadata.append(fps)
metadata.append(b_size)
try:
metadata.append(video.split(".")[0])
except:
print("No video name")
if batch_size != 0:
rebatcher = LatentRebatch()
rebatched_latent = rebatcher.rebatch([latent], [batch_size])
n_chunks = b_size // batch_size
i_tensor_batches = torch.chunk(i_tensor, n_chunks, dim=0)
return i_tensor_batches, rebatched_latent, metadata, width, height
return [i_tensor], [latent], metadata, width, height, fps, b_size
class SaveVideo:
def __init__(self):
self.type = "output"
@classmethod
def INPUT_TYPES(s):
try:
shutil.rmtree(frames_output_dir)
os.mkdir(frames_output_dir)
except:
pass
#print(f"Temporary folder {frames_output_dir} has been emptied.")
return {"required":
{"images": ("IMAGE", ),
"METADATA": ("STRING", {"default": "", "forceInput": True} ),
"SaveVideo": ("BOOLEAN",{"default": False} ),
"SaveFrames": ("BOOLEAN",{"default": False} ),
"filename_prefix": ("STRING",{"default": "video"} ),
"CompressionLevel": ("INT", {"default": 2, "min": 0, "max":9, "step": 1}),
},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ()
FUNCTION = "save_video"
OUTPUT_NODE = True
CATEGORY = "N-Suite/Video"
def save_video(self, images,METADATA,SaveVideo,SaveFrames,filename_prefix, CompressionLevel, prompt=None, extra_pnginfo=None):
self.video_file_path,self.video_filename = get_output_filename_video(filename_prefix, videos_output_dir, ".mp4")
fps = METADATA[0]
frame_number = METADATA[1]
video_filename_original = METADATA[2]
#full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path("", frames_output_dir, images[0].shape[1], images[0].shape[0])
results = list()
for image in images:
full_output_folder,file = get_output_filename("", frames_output_dir, ".png")
file_name = file
i = 255. * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
metadata = None
#file = f"frame_{counter:05}_.png"
img.save(full_output_folder, pnginfo=metadata, compress_level=CompressionLevel)
results.append({
"filename": file,
"subfolder": "frames",
"type": self.type
})
try:
file_name_number = int(file.split(".")[0])
except:
file_name_number = 0
if(file_name_number >= frame_number):
create_video_from_frames(frames_output_dir, videos_output_temp_dir,frame_rate=fps)
video_clip = VideoFileClip(videos_output_temp_dir)
try:
audio_clip = AudioFileClip(os.path.join(temp_output_dir,video_filename_original,"audio.mp3"))
video_clip = video_clip.set_audio(audio_clip)
except:
print("No audio found")
pass
if SaveFrames == True:
#copy frames_output_dir to self.video_file_path/self.video_filename
frame_folder=os.path.join(videos_output_dir,self.video_filename.split(".")[0])
shutil.copytree(frames_output_dir, frame_folder)
if SaveVideo == True:
video_clip.write_videofile(self.video_file_path)
file_name = self.video_filename
else:
#delete all temporary files that start with video_preview
for file in os.listdir(video_preview_output_temp_dir):
if file.startswith("video_preview"):
os.remove(os.path.join(video_preview_output_temp_dir,file))
#random number
suffix = str(random.randint(1,100000))
file_name = f"video_preview_{suffix}.mp4"
video_clip.write_videofile(os.path.join(video_preview_output_temp_dir,file_name))
return {"ui": {"text": [file_name],}}
class LoadFramesFromFolder:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {"required": { "folder":("STRING", {"default": ""} ),
"fps":("INT", {"default": 30})
}}
RETURN_TYPES = ("IMAGE","STRING","INT","INT","INT","STRING","STRING",)
RETURN_NAMES = ("IMAGES","METADATA","MAX WIDTH","MAX HEIGHT","FRAME COUNT","PATH","IMAGE LIST")
FUNCTION = "load_images"
OUTPUT_IS_LIST = (True,False,False,False,False,False,False,)
CATEGORY = "N-Suite/Video"
def load_images(self, folder,fps):
image_list = []
image_names = []
max_width = 0
max_height = 0
frame_count = 0
METADATA = [fps, len(os.listdir(folder)),"load"]
images = [os.path.join(folder, filename) for filename in os.listdir(folder) if filename.endswith(".png") or filename.endswith(".jpg")]
images.sort(key=lambda f: int(''.join(filter(str.isdigit, f))))
for image_path in images:
#get image name
image_names.append(image_path.split("/")[-1])
image = Image.open(image_path)
width, height = image.size
max_width = max(max_width, width)
max_height = max(max_height, height)
image_list.append((image_preprocessing(image)))
frame_count += 1
image_names_final='\n'.join(image_names)
print (f"Details: {frame_count} frames, {max_width}x{max_height}")
return (image_list,METADATA, max_width, max_height,frame_count,folder,image_names_final,)
class SetMetadata:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {"required": { "number_of_frames":("INT", {"default": 1, "min": 1, "step": 1}),
"fps":("INT", {"default": 30, "min": 1, "step": 1}),
"VideoName": ("STRING", {"default": "manual"} )
}}
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("METADATA",)
FUNCTION = "set_metadata"
OUTPUT_IS_LIST = (False,)
CATEGORY = "N-Suite/Video"
def set_metadata(self, number_of_frames,fps,VideoName):
METADATA = [fps, number_of_frames,VideoName]
return (METADATA,)
# A dictionary that contains all nodes you want to export with their names
# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
"LoadVideo [n-suite]": LoadVideoAdvanced,
"SaveVideo [n-suite]":SaveVideo,
"LoadFramesFromFolder [n-suite]": LoadFramesFromFolder,
"SetMetadataForSaveVideo [n-suite]": SetMetadata
}
# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
"LoadVideo [n-suite]": "LoadVideo [π
-π
’π
€π
π
£π
]",
"SaveVideo [n-suite]": "SaveVideo [π
-π
’π
€π
π
£π
]",
"LoadFramesFromFolder [n-suite]": "LoadFramesFromFolder [π
-π
’π
€π
π
£π
]",
"SetMetadataForSaveVideo [n-suite]": "SetMetadataForSaveVideo [π
-π
’π
€π
π
£π
]"
} |