import os import cv2 import torch import argparse from torch.nn import functional as F import warnings warnings.filterwarnings("ignore") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") torch.set_grad_enabled(False) if torch.cuda.is_available(): torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True parser = argparse.ArgumentParser(description='STVSR for a pair of images') parser.add_argument('--img', dest='img', nargs=2, required=True) parser.add_argument('--exp', default=2, type=int) parser.add_argument('--ratio', default=0, type=float, help='inference ratio between two images with 0 - 1 range') parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files') args = parser.parse_args() from train_log.model import Model model = Model() model.device() model.load_model('train_log') model.eval() if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'): img0 = cv2.imread(args.img[0], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH) img1 = cv2.imread(args.img[1], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH) img0 = cv2.resize(img0, (0, 0), fx=2, fy=2, interpolation=cv2.INTER_CUBIC) img1 = cv2.resize(img1, (0, 0), fx=2, fy=2, interpolation=cv2.INTER_CUBIC) img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device)).unsqueeze(0) img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device)).unsqueeze(0) else: img0 = cv2.imread(args.img[0], cv2.IMREAD_UNCHANGED) img1 = cv2.imread(args.img[1], cv2.IMREAD_UNCHANGED) img0 = cv2.resize(img0, (0, 0), fx=2, fy=2, interpolation=cv2.INTER_CUBIC) img1 = cv2.resize(img1, (0, 0), fx=2, fy=2, interpolation=cv2.INTER_CUBIC) img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0) img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0) n, c, h, w = img0.shape ph = ((h - 1) // 32 + 1) * 32 pw = ((w - 1) // 32 + 1) * 32 padding = (0, pw - w, 0, ph - h) img0 = F.pad(img0, padding) img1 = F.pad(img1, padding) if args.ratio: print('ratio={}'.format(args.ratio)) img_list = model.inference(img0, img1, timestep=args.ratio) else: n = 2 ** args.exp - 1 time_list = [0] for i in range(n): time_list.append((i+1) * 1. / (n+1)) time_list.append(1) print(time_list) img_list = model.inference(img0, img1, timestep=time_list) if not os.path.exists('output'): os.mkdir('output') for i in range(len(img_list)): if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'): cv2.imwrite('output/img{}.exr'.format(i), (img_list[i][0]).cpu().numpy().transpose(1, 2, 0)[:h, :w], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF]) else: cv2.imwrite('output/img{}.png'.format(i), (img_list[i][0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w])