import os import cv2 import sys import torch import argparse from PIL import Image, ImageOps import folder_paths import numpy as np from tqdm import tqdm from torch.nn import functional as F import _thread from queue import Queue, Empty from pathlib import Path def image_preprocessing(i): i = ImageOps.exif_transpose(i) image = i.convert("RGB") image = np.array(image).astype(np.float32) / 255.0 image = torch.from_numpy(image)[None,] return image class LoadImageFromFolder: def __init__(self): pass @classmethod def INPUT_TYPES(s): return {"required": { "folder":("STRING", {"default": ""} ), "fps":("INT", {"default": 30}) }} RETURN_TYPES = ("IMAGE","INT","INT","INT","STRING","STRING",) RETURN_NAMES = ("IMAGES","MAX WIDTH","MAX HEIGHT","IMAGE COUNT","PATH","IMAGE LIST") FUNCTION = "load_images" OUTPUT_IS_LIST = (True,False,False,False,False,False,) CATEGORY = "N-Suite/Experimental" def load_images(self, folder,fps): image_list = [] image_names = [] max_width = 0 max_height = 0 frame_count = 0 images = [os.path.join(folder, filename) for filename in os.listdir(folder) if filename.endswith(".png") or filename.endswith(".jpg")] for image_path in images: #get image name image_names.append(image_path.split("/")[-1]) image = Image.open(image_path) width, height = image.size max_width = max(max_width, width) max_height = max(max_height, height) image_list.append((image_preprocessing(image))) frame_count += 1 image_names_final='\n'.join(image_names) print (f"Details: {frame_count} frames, {max_width}x{max_height}") return (image_list, max_width, max_height,frame_count,folder,image_names_final,) class SaveCaptionsFromImageList: def __init__(self): pass @classmethod def INPUT_TYPES(s): return {"required": { "folder":("STRING", {"default": ""} ), "fps":("INT", {"default": 30}) }} RETURN_TYPES = ("IMAGE","INT","INT","INT","STRING","STRING",) RETURN_NAMES = ("IMAGES","MAX WIDTH","MAX HEIGHT","IMAGE COUNT","PATH","IMAGE LIST") FUNCTION = "load_images" OUTPUT_IS_LIST = (True,False,False,False,False,False,) CATEGORY = "LJRE/Loader" def load_images(self, folder,fps): image_list = [] image_names = [] max_width = 0 max_height = 0 frame_count = 0 images = [os.path.join(folder, filename) for filename in os.listdir(folder) if filename.endswith(".png") or filename.endswith(".jpg")] for image_path in images: #get image name image_names.append(image_path.split("/")[-1]) image = Image.open(image_path) width, height = image.size max_width = max(max_width, width) max_height = max(max_height, height) image_list.append((image_preprocessing(image))) frame_count += 1 image_names_final='\n'.join(image_names) print (f"Details: {frame_count} frames, {max_width}x{max_height}") return (image_list, max_width, max_height,frame_count,folder,image_names_final,) # NOTE: names should be globally unique NODE_CLASS_MAPPINGS = { "LoadImageFromFolder [n-suite]": LoadImageFromFolder, } # A dictionary that contains the friendly/humanly readable titles for the nodes NODE_DISPLAY_NAME_MAPPINGS = { "LoadImageFromFolder [n-suite]": "Load Image From Folder [🅝-🅢🅤🅘🅣🅔]" }