from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool import datetime import requests import pytz import yaml from tools.final_answer import FinalAnswerTool import cv2 import numpy as np from Gradio_UI import GradioUI # Below is an example of a tool that does nothing. Amaze us with your creativity ! @tool def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type #Keep this format for the description / args / args description but feel free to modify the tool """A tool that does nothing yet Args: arg1: the first argument arg2: the second argument """ return "What magic will you build ?" @tool def simple_object_detection(image_path: str, confidence_threshold: float) -> str: """ A tool that performs simple object detection on an image using MobileNet SSD with error handling. Args: image_path: Path to the input image. confidence_threshold: Minimum confidence (e.g., 0.2) to filter weak detections. Returns: A string indicating the location of the saved processed image or an error message. """ try: # List of class labels MobileNet SSD was trained on classes = ["background", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] # Paths to the pre-trained model files (ensure these files are downloaded) prototxt_path = "MobileNetSSD_deploy.prototxt.txt" model_path = "MobileNetSSD_deploy.caffemodel" # Load the pre-trained model from disk net = cv2.dnn.readNetFromCaffe(prototxt_path, model_path) # Load the image and get its dimensions image = cv2.imread(image_path) if image is None: return f"Error: Image at {image_path} could not be loaded." (h, w) = image.shape[:2] # Prepare the image as a blob for the network blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), scalefactor=0.007843, size=(300, 300), mean=127.5) # Pass the blob through the network to obtain detections net.setInput(blob) detections = net.forward() # Loop over the detections and draw bounding boxes for those above the threshold for i in range(0, detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence > confidence_threshold: idx = int(detections[0, 0, i, 1]) # Compute bounding box coordinates box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") # Draw the bounding box and label on the image label = f"{classes[idx]}: {confidence * 100:.2f}%" cv2.rectangle(image, (startX, startY), (endX, endY), (0, 255, 0), 2) y = startY - 10 if startY - 10 > 10 else startY + 20 cv2.putText(image, label, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) # Save the output image output_path = "output.jpg" cv2.imwrite(output_path, image) return f"Processed image saved as {output_path}" except Exception as e: return f"An error occurred: {str(e)}" @tool def get_current_time_in_timezone(timezone: str) -> str: """A tool that fetches the current local time in a specified timezone. Args: timezone: A string representing a valid timezone (e.g., 'America/New_York'). """ try: # Create timezone object tz = pytz.timezone(timezone) # Get current time in that timezone local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") return f"The current local time in {timezone} is: {local_time}" except Exception as e: return f"Error fetching time for timezone '{timezone}': {str(e)}" final_answer = FinalAnswerTool() # If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: # model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' model = HfApiModel( max_tokens=2096, temperature=0.5, model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded custom_role_conversions=None, ) # Import tool from Hub image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) with open("prompts.yaml", 'r') as stream: prompt_templates = yaml.safe_load(stream) agent = CodeAgent( model=model, tools=[DuckDuckGoSearchTool(), simple_object_detection, get_current_time_in_timezone, final_answer], ## add your tools here (don't remove final answer) max_steps=6, verbosity_level=1, grammar=None, planning_interval=None, name=None, description=None, prompt_templates=prompt_templates ) GradioUI(agent).launch()