|
import itertools |
|
import math |
|
import argparse |
|
import os |
|
import time |
|
import concurrent.futures |
|
import torch |
|
from safetensors.torch import load_file, save_file |
|
from tqdm import tqdm |
|
from library import sai_model_spec, sdxl_model_util, train_util |
|
import library.model_util as model_util |
|
import lora |
|
import oft |
|
from svd_merge_lora import format_lbws, get_lbw_block_index, LAYER26 |
|
from library.utils import setup_logging |
|
|
|
setup_logging() |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def load_state_dict(file_name, dtype): |
|
if os.path.splitext(file_name)[1] == ".safetensors": |
|
sd = load_file(file_name) |
|
metadata = train_util.load_metadata_from_safetensors(file_name) |
|
else: |
|
sd = torch.load(file_name, map_location="cpu") |
|
metadata = {} |
|
|
|
for key in list(sd.keys()): |
|
if type(sd[key]) == torch.Tensor: |
|
sd[key] = sd[key].to(dtype) |
|
|
|
return sd, metadata |
|
|
|
|
|
def save_to_file(file_name, model, metadata): |
|
if os.path.splitext(file_name)[1] == ".safetensors": |
|
save_file(model, file_name, metadata=metadata) |
|
else: |
|
torch.save(model, file_name) |
|
|
|
|
|
def detect_method_from_training_model(models, dtype): |
|
for model in models: |
|
|
|
lora_sd, _ = load_state_dict(model, dtype) |
|
for key in tqdm(lora_sd.keys()): |
|
if "lora_up" in key or "lora_down" in key: |
|
return "LoRA" |
|
elif "oft_blocks" in key: |
|
return "OFT" |
|
|
|
|
|
def merge_to_sd_model(text_encoder1, text_encoder2, unet, models, ratios, lbws, merge_dtype): |
|
text_encoder1.to(merge_dtype) |
|
text_encoder2.to(merge_dtype) |
|
unet.to(merge_dtype) |
|
|
|
|
|
method = detect_method_from_training_model(models, merge_dtype) |
|
logger.info(f"method:{method}") |
|
|
|
if lbws: |
|
lbws, _, LBW_TARGET_IDX = format_lbws(lbws) |
|
else: |
|
LBW_TARGET_IDX = [] |
|
|
|
|
|
name_to_module = {} |
|
for i, root_module in enumerate([text_encoder1, text_encoder2, unet]): |
|
if method == "LoRA": |
|
if i <= 1: |
|
if i == 0: |
|
prefix = lora.LoRANetwork.LORA_PREFIX_TEXT_ENCODER1 |
|
else: |
|
prefix = lora.LoRANetwork.LORA_PREFIX_TEXT_ENCODER2 |
|
target_replace_modules = lora.LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE |
|
else: |
|
prefix = lora.LoRANetwork.LORA_PREFIX_UNET |
|
target_replace_modules = ( |
|
lora.LoRANetwork.UNET_TARGET_REPLACE_MODULE + lora.LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 |
|
) |
|
elif method == "OFT": |
|
prefix = oft.OFTNetwork.OFT_PREFIX_UNET |
|
|
|
target_replace_modules = ( |
|
oft.OFTNetwork.UNET_TARGET_REPLACE_MODULE_ALL_LINEAR + oft.OFTNetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 |
|
) |
|
|
|
for name, module in root_module.named_modules(): |
|
if module.__class__.__name__ in target_replace_modules: |
|
for child_name, child_module in module.named_modules(): |
|
if child_module.__class__.__name__ == "Linear" or child_module.__class__.__name__ == "Conv2d": |
|
lora_name = prefix + "." + name + "." + child_name |
|
lora_name = lora_name.replace(".", "_") |
|
name_to_module[lora_name] = child_module |
|
|
|
for model, ratio, lbw in itertools.zip_longest(models, ratios, lbws): |
|
logger.info(f"loading: {model}") |
|
lora_sd, _ = load_state_dict(model, merge_dtype) |
|
|
|
logger.info(f"merging...") |
|
|
|
if lbw: |
|
lbw_weights = [1] * 26 |
|
for index, value in zip(LBW_TARGET_IDX, lbw): |
|
lbw_weights[index] = value |
|
logger.info(f"lbw: {dict(zip(LAYER26.keys(), lbw_weights))}") |
|
|
|
if method == "LoRA": |
|
for key in tqdm(lora_sd.keys()): |
|
if "lora_down" in key: |
|
up_key = key.replace("lora_down", "lora_up") |
|
alpha_key = key[: key.index("lora_down")] + "alpha" |
|
|
|
|
|
module_name = ".".join(key.split(".")[:-2]) |
|
if module_name not in name_to_module: |
|
logger.info(f"no module found for LoRA weight: {key}") |
|
continue |
|
module = name_to_module[module_name] |
|
|
|
|
|
down_weight = lora_sd[key] |
|
up_weight = lora_sd[up_key] |
|
|
|
dim = down_weight.size()[0] |
|
alpha = lora_sd.get(alpha_key, dim) |
|
scale = alpha / dim |
|
|
|
if lbw: |
|
index = get_lbw_block_index(key, True) |
|
is_lbw_target = index in LBW_TARGET_IDX |
|
if is_lbw_target: |
|
scale *= lbw_weights[index] |
|
|
|
|
|
weight = module.weight |
|
|
|
if len(weight.size()) == 2: |
|
|
|
weight = weight + ratio * (up_weight @ down_weight) * scale |
|
elif down_weight.size()[2:4] == (1, 1): |
|
|
|
weight = ( |
|
weight |
|
+ ratio |
|
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) |
|
* scale |
|
) |
|
else: |
|
|
|
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) |
|
|
|
weight = weight + ratio * conved * scale |
|
|
|
module.weight = torch.nn.Parameter(weight) |
|
|
|
elif method == "OFT": |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
for key in tqdm(lora_sd.keys()): |
|
if "oft_blocks" in key: |
|
oft_blocks = lora_sd[key] |
|
dim = oft_blocks.shape[0] |
|
break |
|
for key in tqdm(lora_sd.keys()): |
|
if "alpha" in key: |
|
oft_blocks = lora_sd[key] |
|
alpha = oft_blocks.item() |
|
break |
|
|
|
def merge_to(key): |
|
if "alpha" in key: |
|
return |
|
|
|
|
|
module_name = ".".join(key.split(".")[:-1]) |
|
if module_name not in name_to_module: |
|
logger.info(f"no module found for OFT weight: {key}") |
|
return |
|
module = name_to_module[module_name] |
|
|
|
|
|
|
|
oft_blocks = lora_sd[key] |
|
|
|
if isinstance(module, torch.nn.Linear): |
|
out_dim = module.out_features |
|
elif isinstance(module, torch.nn.Conv2d): |
|
out_dim = module.out_channels |
|
|
|
num_blocks = dim |
|
block_size = out_dim // dim |
|
constraint = (0 if alpha is None else alpha) * out_dim |
|
|
|
multiplier = 1 |
|
if lbw: |
|
index = get_lbw_block_index(key, False) |
|
is_lbw_target = index in LBW_TARGET_IDX |
|
if is_lbw_target: |
|
multiplier *= lbw_weights[index] |
|
|
|
block_Q = oft_blocks - oft_blocks.transpose(1, 2) |
|
norm_Q = torch.norm(block_Q.flatten()) |
|
new_norm_Q = torch.clamp(norm_Q, max=constraint) |
|
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) |
|
I = torch.eye(block_size, device=oft_blocks.device).unsqueeze(0).repeat(num_blocks, 1, 1) |
|
block_R = torch.matmul(I + block_Q, (I - block_Q).inverse()) |
|
block_R_weighted = multiplier * block_R + (1 - multiplier) * I |
|
R = torch.block_diag(*block_R_weighted) |
|
|
|
|
|
org_sd = module.state_dict() |
|
org_weight = org_sd["weight"].to(device) |
|
|
|
R = R.to(org_weight.device, dtype=org_weight.dtype) |
|
|
|
if org_weight.dim() == 4: |
|
weight = torch.einsum("oihw, op -> pihw", org_weight, R) |
|
else: |
|
weight = torch.einsum("oi, op -> pi", org_weight, R) |
|
|
|
weight = weight.contiguous() |
|
|
|
module.weight = torch.nn.Parameter(weight) |
|
|
|
|
|
max_workers = 1 if device.type != "cpu" else None |
|
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor: |
|
list(tqdm(executor.map(merge_to, lora_sd.keys()), total=len(lora_sd.keys()))) |
|
|
|
|
|
def merge_lora_models(models, ratios, lbws, merge_dtype, concat=False, shuffle=False): |
|
base_alphas = {} |
|
base_dims = {} |
|
|
|
|
|
method = detect_method_from_training_model(models, merge_dtype) |
|
if method == "OFT": |
|
raise ValueError( |
|
"OFT model is not supported for merging OFT models. / OFTモデルはOFTモデル同士のマージには対応していません" |
|
) |
|
|
|
if lbws: |
|
lbws, _, LBW_TARGET_IDX = format_lbws(lbws) |
|
else: |
|
LBW_TARGET_IDX = [] |
|
|
|
merged_sd = {} |
|
v2 = None |
|
base_model = None |
|
for model, ratio, lbw in itertools.zip_longest(models, ratios, lbws): |
|
logger.info(f"loading: {model}") |
|
lora_sd, lora_metadata = load_state_dict(model, merge_dtype) |
|
|
|
if lbw: |
|
lbw_weights = [1] * 26 |
|
for index, value in zip(LBW_TARGET_IDX, lbw): |
|
lbw_weights[index] = value |
|
logger.info(f"lbw: {dict(zip(LAYER26.keys(), lbw_weights))}") |
|
|
|
if lora_metadata is not None: |
|
if v2 is None: |
|
v2 = lora_metadata.get(train_util.SS_METADATA_KEY_V2, None) |
|
if base_model is None: |
|
base_model = lora_metadata.get(train_util.SS_METADATA_KEY_BASE_MODEL_VERSION, None) |
|
|
|
|
|
alphas = {} |
|
dims = {} |
|
for key in lora_sd.keys(): |
|
if "alpha" in key: |
|
lora_module_name = key[: key.rfind(".alpha")] |
|
alpha = float(lora_sd[key].detach().numpy()) |
|
alphas[lora_module_name] = alpha |
|
if lora_module_name not in base_alphas: |
|
base_alphas[lora_module_name] = alpha |
|
elif "lora_down" in key: |
|
lora_module_name = key[: key.rfind(".lora_down")] |
|
dim = lora_sd[key].size()[0] |
|
dims[lora_module_name] = dim |
|
if lora_module_name not in base_dims: |
|
base_dims[lora_module_name] = dim |
|
|
|
for lora_module_name in dims.keys(): |
|
if lora_module_name not in alphas: |
|
alpha = dims[lora_module_name] |
|
alphas[lora_module_name] = alpha |
|
if lora_module_name not in base_alphas: |
|
base_alphas[lora_module_name] = alpha |
|
|
|
logger.info(f"dim: {list(set(dims.values()))}, alpha: {list(set(alphas.values()))}") |
|
|
|
|
|
logger.info(f"merging...") |
|
for key in tqdm(lora_sd.keys()): |
|
if "alpha" in key: |
|
continue |
|
|
|
if "lora_up" in key and concat: |
|
concat_dim = 1 |
|
elif "lora_down" in key and concat: |
|
concat_dim = 0 |
|
else: |
|
concat_dim = None |
|
|
|
lora_module_name = key[: key.rfind(".lora_")] |
|
|
|
base_alpha = base_alphas[lora_module_name] |
|
alpha = alphas[lora_module_name] |
|
|
|
scale = math.sqrt(alpha / base_alpha) * ratio |
|
scale = abs(scale) if "lora_up" in key else scale |
|
|
|
if lbw: |
|
index = get_lbw_block_index(key, True) |
|
is_lbw_target = index in LBW_TARGET_IDX |
|
if is_lbw_target: |
|
scale *= lbw_weights[index] |
|
|
|
if key in merged_sd: |
|
assert ( |
|
merged_sd[key].size() == lora_sd[key].size() or concat_dim is not None |
|
), f"weights shape mismatch merging v1 and v2, different dims? / 重みのサイズが合いません。v1とv2、または次元数の異なるモデルはマージできません" |
|
if concat_dim is not None: |
|
merged_sd[key] = torch.cat([merged_sd[key], lora_sd[key] * scale], dim=concat_dim) |
|
else: |
|
merged_sd[key] = merged_sd[key] + lora_sd[key] * scale |
|
else: |
|
merged_sd[key] = lora_sd[key] * scale |
|
|
|
|
|
for lora_module_name, alpha in base_alphas.items(): |
|
key = lora_module_name + ".alpha" |
|
merged_sd[key] = torch.tensor(alpha) |
|
if shuffle: |
|
key_down = lora_module_name + ".lora_down.weight" |
|
key_up = lora_module_name + ".lora_up.weight" |
|
dim = merged_sd[key_down].shape[0] |
|
perm = torch.randperm(dim) |
|
merged_sd[key_down] = merged_sd[key_down][perm] |
|
merged_sd[key_up] = merged_sd[key_up][:, perm] |
|
|
|
logger.info("merged model") |
|
logger.info(f"dim: {list(set(base_dims.values()))}, alpha: {list(set(base_alphas.values()))}") |
|
|
|
|
|
dims_list = list(set(base_dims.values())) |
|
alphas_list = list(set(base_alphas.values())) |
|
all_same_dims = True |
|
all_same_alphas = True |
|
for dims in dims_list: |
|
if dims != dims_list[0]: |
|
all_same_dims = False |
|
break |
|
for alphas in alphas_list: |
|
if alphas != alphas_list[0]: |
|
all_same_alphas = False |
|
break |
|
|
|
|
|
dims = f"{dims_list[0]}" if all_same_dims else "Dynamic" |
|
alphas = f"{alphas_list[0]}" if all_same_alphas else "Dynamic" |
|
metadata = train_util.build_minimum_network_metadata(v2, base_model, "networks.lora", dims, alphas, None) |
|
|
|
return merged_sd, metadata |
|
|
|
|
|
def merge(args): |
|
assert len(args.models) == len( |
|
args.ratios |
|
), f"number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください" |
|
if args.lbws: |
|
assert len(args.models) == len( |
|
args.lbws |
|
), f"number of models must be equal to number of ratios / モデルの数と層別適用率の数は合わせてください" |
|
else: |
|
args.lbws = [] |
|
|
|
def str_to_dtype(p): |
|
if p == "float": |
|
return torch.float |
|
if p == "fp16": |
|
return torch.float16 |
|
if p == "bf16": |
|
return torch.bfloat16 |
|
return None |
|
|
|
merge_dtype = str_to_dtype(args.precision) |
|
save_dtype = str_to_dtype(args.save_precision) |
|
if save_dtype is None: |
|
save_dtype = merge_dtype |
|
|
|
if args.sd_model is not None: |
|
logger.info(f"loading SD model: {args.sd_model}") |
|
|
|
( |
|
text_model1, |
|
text_model2, |
|
vae, |
|
unet, |
|
logit_scale, |
|
ckpt_info, |
|
) = sdxl_model_util.load_models_from_sdxl_checkpoint(sdxl_model_util.MODEL_VERSION_SDXL_BASE_V1_0, args.sd_model, "cpu") |
|
|
|
merge_to_sd_model(text_model1, text_model2, unet, args.models, args.ratios, args.lbws, merge_dtype) |
|
|
|
if args.no_metadata: |
|
sai_metadata = None |
|
else: |
|
merged_from = sai_model_spec.build_merged_from([args.sd_model] + args.models) |
|
title = os.path.splitext(os.path.basename(args.save_to))[0] |
|
sai_metadata = sai_model_spec.build_metadata( |
|
None, False, False, True, False, False, time.time(), title=title, merged_from=merged_from |
|
) |
|
|
|
logger.info(f"saving SD model to: {args.save_to}") |
|
sdxl_model_util.save_stable_diffusion_checkpoint( |
|
args.save_to, text_model1, text_model2, unet, 0, 0, ckpt_info, vae, logit_scale, sai_metadata, save_dtype |
|
) |
|
else: |
|
state_dict, metadata = merge_lora_models(args.models, args.ratios, args.lbws, merge_dtype, args.concat, args.shuffle) |
|
|
|
|
|
for key in list(state_dict.keys()): |
|
value = state_dict[key] |
|
if type(value) == torch.Tensor and value.dtype.is_floating_point and value.dtype != save_dtype: |
|
state_dict[key] = value.to(save_dtype) |
|
|
|
logger.info(f"calculating hashes and creating metadata...") |
|
|
|
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata) |
|
metadata["sshs_model_hash"] = model_hash |
|
metadata["sshs_legacy_hash"] = legacy_hash |
|
|
|
if not args.no_metadata: |
|
merged_from = sai_model_spec.build_merged_from(args.models) |
|
title = os.path.splitext(os.path.basename(args.save_to))[0] |
|
sai_metadata = sai_model_spec.build_metadata( |
|
state_dict, False, False, True, True, False, time.time(), title=title, merged_from=merged_from |
|
) |
|
metadata.update(sai_metadata) |
|
|
|
logger.info(f"saving model to: {args.save_to}") |
|
save_to_file(args.save_to, state_dict, metadata) |
|
|
|
|
|
def setup_parser() -> argparse.ArgumentParser: |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--save_precision", |
|
type=str, |
|
default=None, |
|
choices=[None, "float", "fp16", "bf16"], |
|
help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ", |
|
) |
|
parser.add_argument( |
|
"--precision", |
|
type=str, |
|
default="float", |
|
choices=["float", "fp16", "bf16"], |
|
help="precision in merging (float is recommended) / マージの計算時の精度(floatを推奨)", |
|
) |
|
parser.add_argument( |
|
"--sd_model", |
|
type=str, |
|
default=None, |
|
help="Stable Diffusion model to load: ckpt or safetensors file, merge LoRA models if omitted / 読み込むモデル、ckptまたはsafetensors。省略時はLoRAモデル同士をマージする", |
|
) |
|
parser.add_argument( |
|
"--save_to", |
|
type=str, |
|
default=None, |
|
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors", |
|
) |
|
parser.add_argument( |
|
"--models", |
|
type=str, |
|
nargs="*", |
|
help="LoRA models to merge: ckpt or safetensors file / マージするLoRAモデル、ckptまたはsafetensors", |
|
) |
|
parser.add_argument("--ratios", type=float, nargs="*", help="ratios for each model / それぞれのLoRAモデルの比率") |
|
parser.add_argument("--lbws", type=str, nargs="*", help="lbw for each model / それぞれのLoRAモデルの層別適用率") |
|
parser.add_argument( |
|
"--no_metadata", |
|
action="store_true", |
|
help="do not save sai modelspec metadata (minimum ss_metadata for LoRA is saved) / " |
|
+ "sai modelspecのメタデータを保存しない(LoRAの最低限のss_metadataは保存される)", |
|
) |
|
parser.add_argument( |
|
"--concat", |
|
action="store_true", |
|
help="concat lora instead of merge (The dim(rank) of the output LoRA is the sum of the input dims) / " |
|
+ "マージの代わりに結合する(LoRAのdim(rank)は入力dimの合計になる)", |
|
) |
|
parser.add_argument( |
|
"--shuffle", |
|
action="store_true", |
|
help="shuffle lora weight./ " + "LoRAの重みをシャッフルする", |
|
) |
|
|
|
return parser |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = setup_parser() |
|
|
|
args = parser.parse_args() |
|
merge(args) |
|
|