|
import argparse |
|
import itertools |
|
import json |
|
import os |
|
import re |
|
import time |
|
import torch |
|
from safetensors.torch import load_file, save_file |
|
from tqdm import tqdm |
|
from library import sai_model_spec, train_util |
|
import library.model_util as model_util |
|
import lora |
|
from library.utils import setup_logging |
|
|
|
setup_logging() |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
CLAMP_QUANTILE = 0.99 |
|
|
|
ACCEPTABLE = [12, 17, 20, 26] |
|
SDXL_LAYER_NUM = [12, 20] |
|
|
|
LAYER12 = { |
|
"BASE": True, |
|
"IN00": False, |
|
"IN01": False, |
|
"IN02": False, |
|
"IN03": False, |
|
"IN04": True, |
|
"IN05": True, |
|
"IN06": False, |
|
"IN07": True, |
|
"IN08": True, |
|
"IN09": False, |
|
"IN10": False, |
|
"IN11": False, |
|
"MID": True, |
|
"OUT00": True, |
|
"OUT01": True, |
|
"OUT02": True, |
|
"OUT03": True, |
|
"OUT04": True, |
|
"OUT05": True, |
|
"OUT06": False, |
|
"OUT07": False, |
|
"OUT08": False, |
|
"OUT09": False, |
|
"OUT10": False, |
|
"OUT11": False, |
|
} |
|
|
|
LAYER17 = { |
|
"BASE": True, |
|
"IN00": False, |
|
"IN01": True, |
|
"IN02": True, |
|
"IN03": False, |
|
"IN04": True, |
|
"IN05": True, |
|
"IN06": False, |
|
"IN07": True, |
|
"IN08": True, |
|
"IN09": False, |
|
"IN10": False, |
|
"IN11": False, |
|
"MID": True, |
|
"OUT00": False, |
|
"OUT01": False, |
|
"OUT02": False, |
|
"OUT03": True, |
|
"OUT04": True, |
|
"OUT05": True, |
|
"OUT06": True, |
|
"OUT07": True, |
|
"OUT08": True, |
|
"OUT09": True, |
|
"OUT10": True, |
|
"OUT11": True, |
|
} |
|
|
|
LAYER20 = { |
|
"BASE": True, |
|
"IN00": True, |
|
"IN01": True, |
|
"IN02": True, |
|
"IN03": True, |
|
"IN04": True, |
|
"IN05": True, |
|
"IN06": True, |
|
"IN07": True, |
|
"IN08": True, |
|
"IN09": False, |
|
"IN10": False, |
|
"IN11": False, |
|
"MID": True, |
|
"OUT00": True, |
|
"OUT01": True, |
|
"OUT02": True, |
|
"OUT03": True, |
|
"OUT04": True, |
|
"OUT05": True, |
|
"OUT06": True, |
|
"OUT07": True, |
|
"OUT08": True, |
|
"OUT09": False, |
|
"OUT10": False, |
|
"OUT11": False, |
|
} |
|
|
|
LAYER26 = { |
|
"BASE": True, |
|
"IN00": True, |
|
"IN01": True, |
|
"IN02": True, |
|
"IN03": True, |
|
"IN04": True, |
|
"IN05": True, |
|
"IN06": True, |
|
"IN07": True, |
|
"IN08": True, |
|
"IN09": True, |
|
"IN10": True, |
|
"IN11": True, |
|
"MID": True, |
|
"OUT00": True, |
|
"OUT01": True, |
|
"OUT02": True, |
|
"OUT03": True, |
|
"OUT04": True, |
|
"OUT05": True, |
|
"OUT06": True, |
|
"OUT07": True, |
|
"OUT08": True, |
|
"OUT09": True, |
|
"OUT10": True, |
|
"OUT11": True, |
|
} |
|
|
|
assert len([v for v in LAYER12.values() if v]) == 12 |
|
assert len([v for v in LAYER17.values() if v]) == 17 |
|
assert len([v for v in LAYER20.values() if v]) == 20 |
|
assert len([v for v in LAYER26.values() if v]) == 26 |
|
|
|
RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_") |
|
|
|
|
|
def get_lbw_block_index(lora_name: str, is_sdxl: bool = False) -> int: |
|
|
|
if "text_model_encoder_" in lora_name: |
|
return 0 |
|
|
|
|
|
block_idx = -1 |
|
if not is_sdxl: |
|
NUM_OF_BLOCKS = 12 |
|
m = RE_UPDOWN.search(lora_name) |
|
if m: |
|
g = m.groups() |
|
up_down = g[0] |
|
i = int(g[1]) |
|
j = int(g[3]) |
|
if up_down == "down": |
|
if g[2] == "resnets" or g[2] == "attentions": |
|
idx = 3 * i + j + 1 |
|
elif g[2] == "downsamplers": |
|
idx = 3 * (i + 1) |
|
else: |
|
return block_idx |
|
elif up_down == "up": |
|
if g[2] == "resnets" or g[2] == "attentions": |
|
idx = 3 * i + j |
|
elif g[2] == "upsamplers": |
|
idx = 3 * i + 2 |
|
else: |
|
return block_idx |
|
|
|
if g[0] == "down": |
|
block_idx = 1 + idx |
|
elif g[0] == "up": |
|
block_idx = 1 + NUM_OF_BLOCKS + 1 + idx |
|
|
|
elif "mid_block_" in lora_name: |
|
block_idx = 1 + NUM_OF_BLOCKS |
|
else: |
|
|
|
if lora_name.startswith("lora_unet_"): |
|
name = lora_name[len("lora_unet_") :] |
|
if name.startswith("time_embed_") or name.startswith("label_emb_"): |
|
block_idx = 1 |
|
elif name.startswith("input_blocks_"): |
|
block_idx = 1 + int(name.split("_")[2]) |
|
elif name.startswith("middle_block_"): |
|
block_idx = 13 |
|
elif name.startswith("output_blocks_"): |
|
block_idx = 14 + int(name.split("_")[2]) |
|
elif name.startswith("out_"): |
|
block_idx = 23 |
|
|
|
return block_idx |
|
|
|
|
|
def load_state_dict(file_name, dtype): |
|
if os.path.splitext(file_name)[1] == ".safetensors": |
|
sd = load_file(file_name) |
|
metadata = train_util.load_metadata_from_safetensors(file_name) |
|
else: |
|
sd = torch.load(file_name, map_location="cpu") |
|
metadata = {} |
|
|
|
for key in list(sd.keys()): |
|
if type(sd[key]) == torch.Tensor: |
|
sd[key] = sd[key].to(dtype) |
|
|
|
return sd, metadata |
|
|
|
|
|
def save_to_file(file_name, state_dict, metadata): |
|
if os.path.splitext(file_name)[1] == ".safetensors": |
|
save_file(state_dict, file_name, metadata=metadata) |
|
else: |
|
torch.save(state_dict, file_name) |
|
|
|
|
|
def format_lbws(lbws): |
|
try: |
|
|
|
lbws = [json.loads(lbw) for lbw in lbws] |
|
except Exception: |
|
raise ValueError(f"format of lbws are must be json / 層別適用率はJSON形式で書いてください") |
|
assert all(isinstance(lbw, list) for lbw in lbws), f"lbws are must be list / 層別適用率はリストにしてください" |
|
assert len(set(len(lbw) for lbw in lbws)) == 1, "all lbws should have the same length / 層別適用率は同じ長さにしてください" |
|
assert all( |
|
len(lbw) in ACCEPTABLE for lbw in lbws |
|
), f"length of lbw are must be in {ACCEPTABLE} / 層別適用率の長さは{ACCEPTABLE}のいずれかにしてください" |
|
assert all( |
|
all(isinstance(weight, (int, float)) for weight in lbw) for lbw in lbws |
|
), f"values of lbs are must be numbers / 層別適用率の値はすべて数値にしてください" |
|
|
|
layer_num = len(lbws[0]) |
|
is_sdxl = True if layer_num in SDXL_LAYER_NUM else False |
|
FLAGS = { |
|
"12": LAYER12.values(), |
|
"17": LAYER17.values(), |
|
"20": LAYER20.values(), |
|
"26": LAYER26.values(), |
|
}[str(layer_num)] |
|
LBW_TARGET_IDX = [i for i, flag in enumerate(FLAGS) if flag] |
|
return lbws, is_sdxl, LBW_TARGET_IDX |
|
|
|
|
|
def merge_lora_models(models, ratios, lbws, new_rank, new_conv_rank, device, merge_dtype): |
|
logger.info(f"new rank: {new_rank}, new conv rank: {new_conv_rank}") |
|
merged_sd = {} |
|
v2 = None |
|
base_model = None |
|
|
|
if lbws: |
|
lbws, is_sdxl, LBW_TARGET_IDX = format_lbws(lbws) |
|
else: |
|
is_sdxl = False |
|
LBW_TARGET_IDX = [] |
|
|
|
for model, ratio, lbw in itertools.zip_longest(models, ratios, lbws): |
|
logger.info(f"loading: {model}") |
|
lora_sd, lora_metadata = load_state_dict(model, merge_dtype) |
|
|
|
if lora_metadata is not None: |
|
if v2 is None: |
|
v2 = lora_metadata.get(train_util.SS_METADATA_KEY_V2, None) |
|
if base_model is None: |
|
base_model = lora_metadata.get(train_util.SS_METADATA_KEY_BASE_MODEL_VERSION, None) |
|
|
|
if lbw: |
|
lbw_weights = [1] * 26 |
|
for index, value in zip(LBW_TARGET_IDX, lbw): |
|
lbw_weights[index] = value |
|
logger.info(f"lbw: {dict(zip(LAYER26.keys(), lbw_weights))}") |
|
|
|
|
|
logger.info(f"merging...") |
|
for key in tqdm(list(lora_sd.keys())): |
|
if "lora_down" not in key: |
|
continue |
|
|
|
lora_module_name = key[: key.rfind(".lora_down")] |
|
|
|
down_weight = lora_sd[key] |
|
network_dim = down_weight.size()[0] |
|
|
|
up_weight = lora_sd[lora_module_name + ".lora_up.weight"] |
|
alpha = lora_sd.get(lora_module_name + ".alpha", network_dim) |
|
|
|
in_dim = down_weight.size()[1] |
|
out_dim = up_weight.size()[0] |
|
conv2d = len(down_weight.size()) == 4 |
|
kernel_size = None if not conv2d else down_weight.size()[2:4] |
|
|
|
|
|
|
|
if lora_module_name not in merged_sd: |
|
weight = torch.zeros((out_dim, in_dim, *kernel_size) if conv2d else (out_dim, in_dim), dtype=merge_dtype) |
|
else: |
|
weight = merged_sd[lora_module_name] |
|
if device: |
|
weight = weight.to(device) |
|
|
|
|
|
if device: |
|
up_weight = up_weight.to(device) |
|
down_weight = down_weight.to(device) |
|
|
|
|
|
scale = alpha / network_dim |
|
|
|
if lbw: |
|
index = get_lbw_block_index(key, is_sdxl) |
|
is_lbw_target = index in LBW_TARGET_IDX |
|
if is_lbw_target: |
|
scale *= lbw_weights[index] |
|
|
|
if device: |
|
scale = scale.to(device) |
|
|
|
if not conv2d: |
|
weight = weight + ratio * (up_weight @ down_weight) * scale |
|
elif kernel_size == (1, 1): |
|
weight = ( |
|
weight |
|
+ ratio |
|
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) |
|
* scale |
|
) |
|
else: |
|
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) |
|
weight = weight + ratio * conved * scale |
|
|
|
merged_sd[lora_module_name] = weight.to("cpu") |
|
|
|
|
|
logger.info("extract new lora...") |
|
merged_lora_sd = {} |
|
with torch.no_grad(): |
|
for lora_module_name, mat in tqdm(list(merged_sd.items())): |
|
if device: |
|
mat = mat.to(device) |
|
|
|
conv2d = len(mat.size()) == 4 |
|
kernel_size = None if not conv2d else mat.size()[2:4] |
|
conv2d_3x3 = conv2d and kernel_size != (1, 1) |
|
out_dim, in_dim = mat.size()[0:2] |
|
|
|
if conv2d: |
|
if conv2d_3x3: |
|
mat = mat.flatten(start_dim=1) |
|
else: |
|
mat = mat.squeeze() |
|
|
|
module_new_rank = new_conv_rank if conv2d_3x3 else new_rank |
|
module_new_rank = min(module_new_rank, in_dim, out_dim) |
|
|
|
U, S, Vh = torch.linalg.svd(mat) |
|
|
|
U = U[:, :module_new_rank] |
|
S = S[:module_new_rank] |
|
U = U @ torch.diag(S) |
|
|
|
Vh = Vh[:module_new_rank, :] |
|
|
|
dist = torch.cat([U.flatten(), Vh.flatten()]) |
|
hi_val = torch.quantile(dist, CLAMP_QUANTILE) |
|
low_val = -hi_val |
|
|
|
U = U.clamp(low_val, hi_val) |
|
Vh = Vh.clamp(low_val, hi_val) |
|
|
|
if conv2d: |
|
U = U.reshape(out_dim, module_new_rank, 1, 1) |
|
Vh = Vh.reshape(module_new_rank, in_dim, kernel_size[0], kernel_size[1]) |
|
|
|
up_weight = U |
|
down_weight = Vh |
|
|
|
merged_lora_sd[lora_module_name + ".lora_up.weight"] = up_weight.to("cpu").contiguous() |
|
merged_lora_sd[lora_module_name + ".lora_down.weight"] = down_weight.to("cpu").contiguous() |
|
merged_lora_sd[lora_module_name + ".alpha"] = torch.tensor(module_new_rank, device="cpu") |
|
|
|
|
|
dims = f"{new_rank}" |
|
alphas = f"{new_rank}" |
|
if new_conv_rank is not None: |
|
network_args = {"conv_dim": new_conv_rank, "conv_alpha": new_conv_rank} |
|
else: |
|
network_args = None |
|
metadata = train_util.build_minimum_network_metadata(v2, base_model, "networks.lora", dims, alphas, network_args) |
|
|
|
return merged_lora_sd, metadata, v2 == "True", base_model |
|
|
|
|
|
def merge(args): |
|
assert len(args.models) == len( |
|
args.ratios |
|
), f"number of models must be equal to number of ratios / モデルの数と重みの数は合わせてください" |
|
if args.lbws: |
|
assert len(args.models) == len( |
|
args.lbws |
|
), f"number of models must be equal to number of ratios / モデルの数と層別適用率の数は合わせてください" |
|
else: |
|
args.lbws = [] |
|
|
|
def str_to_dtype(p): |
|
if p == "float": |
|
return torch.float |
|
if p == "fp16": |
|
return torch.float16 |
|
if p == "bf16": |
|
return torch.bfloat16 |
|
return None |
|
|
|
merge_dtype = str_to_dtype(args.precision) |
|
save_dtype = str_to_dtype(args.save_precision) |
|
if save_dtype is None: |
|
save_dtype = merge_dtype |
|
|
|
new_conv_rank = args.new_conv_rank if args.new_conv_rank is not None else args.new_rank |
|
state_dict, metadata, v2, base_model = merge_lora_models( |
|
args.models, args.ratios, args.lbws, args.new_rank, new_conv_rank, args.device, merge_dtype |
|
) |
|
|
|
|
|
for key in list(state_dict.keys()): |
|
value = state_dict[key] |
|
if type(value) == torch.Tensor and value.dtype.is_floating_point and value.dtype != save_dtype: |
|
state_dict[key] = value.to(save_dtype) |
|
|
|
logger.info(f"calculating hashes and creating metadata...") |
|
|
|
model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata) |
|
metadata["sshs_model_hash"] = model_hash |
|
metadata["sshs_legacy_hash"] = legacy_hash |
|
|
|
if not args.no_metadata: |
|
is_sdxl = base_model is not None and base_model.lower().startswith("sdxl") |
|
merged_from = sai_model_spec.build_merged_from(args.models) |
|
title = os.path.splitext(os.path.basename(args.save_to))[0] |
|
sai_metadata = sai_model_spec.build_metadata( |
|
state_dict, v2, v2, is_sdxl, True, False, time.time(), title=title, merged_from=merged_from |
|
) |
|
if v2: |
|
|
|
logger.warning( |
|
"Cannot determine if LoRA is for v-prediction, so save metadata as v-prediction / LoRAがv-prediction用か否か不明なため、仮にv-prediction用としてmetadataを保存します" |
|
) |
|
metadata.update(sai_metadata) |
|
|
|
logger.info(f"saving model to: {args.save_to}") |
|
save_to_file(args.save_to, state_dict, metadata) |
|
|
|
|
|
def setup_parser() -> argparse.ArgumentParser: |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--save_precision", |
|
type=str, |
|
default=None, |
|
choices=[None, "float", "fp16", "bf16"], |
|
help="precision in saving, same to merging if omitted / 保存時に精度を変更して保存する、省略時はマージ時の精度と同じ", |
|
) |
|
parser.add_argument( |
|
"--precision", |
|
type=str, |
|
default="float", |
|
choices=["float", "fp16", "bf16"], |
|
help="precision in merging (float is recommended) / マージの計算時の精度(floatを推奨)", |
|
) |
|
parser.add_argument( |
|
"--save_to", |
|
type=str, |
|
default=None, |
|
help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors", |
|
) |
|
parser.add_argument( |
|
"--models", |
|
type=str, |
|
nargs="*", |
|
help="LoRA models to merge: ckpt or safetensors file / マージするLoRAモデル、ckptまたはsafetensors", |
|
) |
|
parser.add_argument("--ratios", type=float, nargs="*", help="ratios for each model / それぞれのLoRAモデルの比率") |
|
parser.add_argument("--lbws", type=str, nargs="*", help="lbw for each model / それぞれのLoRAモデルの層別適用率") |
|
parser.add_argument("--new_rank", type=int, default=4, help="Specify rank of output LoRA / 出力するLoRAのrank (dim)") |
|
parser.add_argument( |
|
"--new_conv_rank", |
|
type=int, |
|
default=None, |
|
help="Specify rank of output LoRA for Conv2d 3x3, None for same as new_rank / 出力するConv2D 3x3 LoRAのrank (dim)、Noneでnew_rankと同じ", |
|
) |
|
parser.add_argument( |
|
"--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う" |
|
) |
|
parser.add_argument( |
|
"--no_metadata", |
|
action="store_true", |
|
help="do not save sai modelspec metadata (minimum ss_metadata for LoRA is saved) / " |
|
+ "sai modelspecのメタデータを保存しない(LoRAの最低限のss_metadataは保存される)", |
|
) |
|
|
|
return parser |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = setup_parser() |
|
|
|
args = parser.parse_args() |
|
merge(args) |
|
|