import streamlit as st import pandas as pd def load_data(): return pd.read_csv("benchmark_data.csv") def case_insensitive_search(data, query, column): if query: return data[data[column].str.lower().str.contains(query.lower())] return data def display_table(data, rows_per_page=10): container = st.container() with container: height = min(40 + rows_per_page * 38, 800) st.dataframe(data, height=height) def main(): st.title("Multihop-RAG Benchmark Space") data = load_data() st.sidebar.header("Search Options") chat_model_query = st.sidebar.text_input("Search by Chat Model") embedding_model_query = st.sidebar.text_input("Search by Embedding Model") chunk_query = st.sidebar.text_input("Search by Chunk") if chat_model_query: data = case_insensitive_search(data, chat_model_query, 'chat_model') if embedding_model_query: data = case_insensitive_search(data, embedding_model_query, 'embedding_model') if chunk_query: data = case_insensitive_search(data, chunk_query, 'chunk') st.header("Benchmark Results") st.write("Displaying results for MRR@10, Hit@10, and Accuracy across different frameworks, embedding models, chat models, and chunks.") display_table(data) if st.sidebar.checkbox("Show Metrics Distribution"): st.subheader("Metrics Distribution") st.bar_chart(data[['MRR@10', 'Hit@10', 'Accuracy']]) st.sidebar.header("Citation") st.sidebar.info( "Please cite this dataset as:\n" "Author et al. (2024). Multihop-RAG Benchmark Dataset. Retrieved from [Source URL]." ) st.markdown("---") st.caption("For citation, please use: 'Author et al. (2024), Multihop-RAG Benchmark Dataset, Retrieved from [Source URL].'") if __name__ == "__main__": main()