File size: 12,881 Bytes
a28c293
407412c
a28c293
 
 
 
1b8d1f0
 
a28c293
08848b6
4972f24
a28c293
4972f24
a28c293
 
4972f24
7b1f9ef
4972f24
7b1f9ef
a28c293
7b1f9ef
 
51a612e
 
4972f24
7b1f9ef
 
 
 
 
 
 
 
 
 
4972f24
 
 
 
 
7b1f9ef
 
4972f24
7b1f9ef
4972f24
 
7b1f9ef
4972f24
 
 
 
 
 
 
7b1f9ef
4972f24
 
 
 
 
 
 
 
 
 
 
 
 
 
7b1f9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b8d1f0
7b1f9ef
 
 
 
 
 
 
a28c293
 
 
 
4972f24
a28c293
 
 
 
 
7b1f9ef
a28c293
7b1f9ef
 
a28c293
 
7b1f9ef
a28c293
 
7b1f9ef
407412c
a28c293
7b1f9ef
 
4972f24
7b1f9ef
 
4972f24
a28c293
 
 
7b1f9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a28c293
 
 
 
 
7b1f9ef
 
 
 
a28c293
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
407412c
a28c293
 
7b1f9ef
 
a28c293
7b1f9ef
a28c293
 
7b1f9ef
a28c293
 
7b1f9ef
51a612e
7b1f9ef
 
9797f9f
 
4241600
4eb7b99
 
7b1f9ef
a28c293
 
 
 
7b1f9ef
a28c293
7b1f9ef
a28c293
 
 
 
 
4972f24
a28c293
 
 
 
 
 
 
 
 
 
7b1f9ef
a28c293
 
 
 
 
 
 
 
 
7b1f9ef
a28c293
 
7b1f9ef
a28c293
4972f24
 
 
 
 
 
7b1f9ef
4972f24
 
7b1f9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a28c293
7b1f9ef
 
 
 
 
a28c293
 
 
 
7b1f9ef
a28c293
 
 
 
 
 
7b1f9ef
 
 
 
 
 
 
 
 
 
 
 
 
 
a28c293
7b1f9ef
a28c293
7b1f9ef
a28c293
7b1f9ef
 
 
 
 
a28c293
7b1f9ef
 
 
 
a28c293
 
7b1f9ef
a28c293
7b1f9ef
a28c293
 
 
 
 
4972f24
a28c293
 
 
 
 
7b1f9ef
 
 
 
 
 
 
 
 
 
 
 
a28c293
 
7b1f9ef
a28c293
7b1f9ef
 
 
 
 
a28c293
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import gradio as gr
import torch
import torchaudio
import numpy as np
import tempfile
import time
from pathlib import Path
from huggingface_hub import hf_hub_download
import os
import spaces
from transformers import pipeline

# Import the inference module
from infer import DMOInference

# Global variables
model = None
asr_pipe = None
device = "cuda" if torch.cuda.is_available() else "cpu"

# Initialize ASR pipeline
def initialize_asr_pipeline(device=device, dtype=None):
    """Initialize the ASR pipeline on startup."""
    global asr_pipe
    
    if dtype is None:
        dtype = (
            torch.float16
            if "cuda" in device
            and torch.cuda.is_available()
            and torch.cuda.get_device_properties(device).major >= 7
            and not torch.cuda.get_device_name().endswith("[ZLUDA]")
            else torch.float32
        )
    
    print("Initializing ASR pipeline...")
    try:
        asr_pipe = pipeline(
            "automatic-speech-recognition",
            model="openai/whisper-large-v3-turbo",
            torch_dtype=dtype,
            device="cpu"  # Keep ASR on CPU to save GPU memory
        )
        print("ASR pipeline initialized successfully")
    except Exception as e:
        print(f"Error initializing ASR pipeline: {e}")
        asr_pipe = None

# Transcribe function
def transcribe(ref_audio, language=None):
    """Transcribe audio using the pre-loaded ASR pipeline."""
    global asr_pipe
    
    if asr_pipe is None:
        return ""  # Return empty string if ASR is not available
    
    try:
        result = asr_pipe(
            ref_audio,
            chunk_length_s=30,
            batch_size=128,
            generate_kwargs={"task": "transcribe", "language": language} if language else {"task": "transcribe"},
            return_timestamps=False,
        )
        return result["text"].strip()
    except Exception as e:
        print(f"Transcription error: {e}")
        return ""

def download_models():
    """Download models from HuggingFace Hub."""
    try:
        print("Downloading models from HuggingFace...")
        
        # Download student model
        student_path = hf_hub_download(
            repo_id="yl4579/DMOSpeech2",
            filename="model_85000.pt",
            cache_dir="./models"
        )
        
        # Download duration predictor
        duration_path = hf_hub_download(
            repo_id="yl4579/DMOSpeech2",
            filename="model_1500.pt",
            cache_dir="./models"
        )
        
        print(f"Student model: {student_path}")
        print(f"Duration model: {duration_path}")
        
        return student_path, duration_path
        
    except Exception as e:
        print(f"Error downloading models: {e}")
        return None, None

def initialize_model():
    """Initialize the model on startup."""
    global model
    
    try:
        # Download models
        student_path, duration_path = download_models()
        
        if not student_path or not duration_path:
            return False, "Failed to download models from HuggingFace"
        
        # Initialize model
        model = DMOInference(
            student_checkpoint_path=student_path,
            duration_predictor_path=duration_path,
            device=device,
            model_type="F5TTS_Base"
        )
        
        return True, f"Model loaded successfully on {device.upper()}"
        
    except Exception as e:
        return False, f"Error initializing model: {str(e)}"

# Initialize models on startup
print("Initializing models...")
model_loaded, status_message = initialize_model()
initialize_asr_pipeline()  # Initialize ASR pipeline

@spaces.GPU(duration=120)  # Request GPU for up to 120 seconds
def generate_speech(
    prompt_audio,
    prompt_text,
    target_text,
    mode,
    temperature,
    custom_teacher_steps,
    custom_teacher_stopping_time,
    custom_student_start_step,
    verbose
):
    """Generate speech with different configurations."""
    
    if not model_loaded or model is None:
        return None, "Model not loaded! Please refresh the page.", "", ""
    
    if prompt_audio is None:
        return None, "Please upload a reference audio!", "", ""
    
    if not target_text:
        return None, "Please enter text to generate!", "", ""
    
    try:
        # Auto-transcribe if prompt_text is empty
        if not prompt_text and prompt_text != "":
            print("Auto-transcribing reference audio...")
            prompt_text = transcribe(prompt_audio)
            print(f"Transcribed: {prompt_text}")
        
        start_time = time.time()
        
        # Configure parameters based on mode
        if mode == "Student Only (4 steps)":
            teacher_steps = 0
            student_start_step = 0
            teacher_stopping_time = 1.0
        elif mode == "Teacher-Guided (8 steps)":
            # Default configuration from the notebook
            teacher_steps = 16
            teacher_stopping_time = 0.07
            student_start_step = 1
        elif mode == "High Diversity (16 steps)":
            teacher_steps = 24
            teacher_stopping_time = 0.3
            student_start_step = 2
        else:  # Custom
            teacher_steps = custom_teacher_steps
            teacher_stopping_time = custom_teacher_stopping_time
            student_start_step = custom_student_start_step
        
        # Generate speech
        generated_audio = model.generate(
            gen_text=target_text,
            audio_path=prompt_audio,
            prompt_text=prompt_text if prompt_text else None,
            teacher_steps=teacher_steps,
            teacher_stopping_time=teacher_stopping_time,
            student_start_step=student_start_step,
            temperature=temperature,
            verbose=verbose
        )
        
        end_time = time.time()
        
        # Calculate metrics
        processing_time = end_time - start_time
        audio_duration = generated_audio.shape[-1] / 24000
        rtf = processing_time / audio_duration
        
        # Save audio
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
            output_path = tmp_file.name
            
        if isinstance(generated_audio, np.ndarray):
            generated_audio = torch.from_numpy(generated_audio)
        
        if generated_audio.dim() == 1:
            generated_audio = generated_audio.unsqueeze(0)
            
        torchaudio.save(output_path, generated_audio, 24000)
        
        # Format metrics
        metrics = f"RTF: {rtf:.2f}x ({1/rtf:.2f}x speed) | Processing: {processing_time:.2f}s for {audio_duration:.2f}s audio"
        
        return output_path, "Success!", metrics, f"Mode: {mode} | Transcribed: {prompt_text[:50]}..." if not prompt_text else f"Mode: {mode}"
        
    except Exception as e:
        return None, f"Error: {str(e)}", "", ""

# Create Gradio interface
with gr.Blocks(title="DMOSpeech 2 - Zero-Shot TTS", theme=gr.themes.Soft()) as demo:
    gr.Markdown(f"""
    # πŸŽ™οΈ DMOSpeech 2: Zero-Shot Text-to-Speech
    
    Generate natural speech in any voice with just a short reference audio! 

    **NOTE: The entire space was generated by Claude for demo purposes and may not demostrate the model's real performance because it can contain glitches/bugs**

    This space will retire when a better and more cleaned up space comes up later. 
    
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            # Reference audio input
            prompt_audio = gr.Audio(
                label="πŸ“Ž Reference Audio",
                type="filepath",
                sources=["upload", "microphone"]
            )
            
            prompt_text = gr.Textbox(
                label="πŸ“ Reference Text (leave empty for auto-transcription)",
                placeholder="The text spoken in the reference audio...",
                lines=2
            )
            
            target_text = gr.Textbox(
                label="✍️ Text to Generate",
                placeholder="Enter the text you want to synthesize...",
                lines=4
            )
            
            # Generation mode
            mode = gr.Radio(
                choices=[
                    "Student Only (4 steps)",
                    "Teacher-Guided (8 steps)",
                    "High Diversity (16 steps)",
                    "Custom"
                ],
                value="Teacher-Guided (8 steps)",
                label="πŸš€ Generation Mode",
                info="Choose speed vs quality/diversity tradeoff"
            )
            
            # Advanced settings (collapsible)
            with gr.Accordion("βš™οΈ Advanced Settings", open=False):
                temperature = gr.Slider(
                    minimum=0.0,
                    maximum=2.0,
                    value=0.0,
                    step=0.1,
                    label="Duration Temperature",
                    info="0 = deterministic, >0 = more variation in speech rhythm"
                )
                
                with gr.Group(visible=False) as custom_settings:
                    gr.Markdown("### Custom Mode Settings")
                    custom_teacher_steps = gr.Slider(
                        minimum=0,
                        maximum=32,
                        value=16,
                        step=1,
                        label="Teacher Steps",
                        info="More steps = higher quality"
                    )
                    
                    custom_teacher_stopping_time = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=0.07,
                        step=0.01,
                        label="Teacher Stopping Time",
                        info="When to switch to student"
                    )
                    
                    custom_student_start_step = gr.Slider(
                        minimum=0,
                        maximum=4,
                        value=1,
                        step=1,
                        label="Student Start Step",
                        info="Which student step to start from"
                    )
                
                verbose = gr.Checkbox(
                    value=False,
                    label="Verbose Output",
                    info="Show detailed generation steps"
                )
            
            generate_btn = gr.Button("🎡 Generate Speech", variant="primary", size="lg")
            
        with gr.Column(scale=1):
            # Output
            output_audio = gr.Audio(
                label="πŸ”Š Generated Speech",
                type="filepath",
                autoplay=True
            )
            
            status = gr.Textbox(
                label="Status",
                interactive=False
            )
            
            metrics = gr.Textbox(
                label="Performance Metrics",
                interactive=False
            )
            
            info = gr.Textbox(
                label="Generation Info",
                interactive=False
            )
            
            # Tips
            gr.Markdown("""
            ### πŸ’‘ Quick Tips:
            
            - **Auto-transcription**: Leave reference text empty to auto-transcribe
            - **Student Only**: Fastest (4 steps), good quality
            - **Teacher-Guided**: Best balance (8 steps), recommended
            - **High Diversity**: More natural prosody (16 steps)
            - **Custom Mode**: Fine-tune all parameters
            
            ### πŸ“Š Expected RTF (Real-Time Factor):
            - Student Only: ~0.05x (20x faster than real-time)
            - Teacher-Guided: ~0.10x (10x faster)
            - High Diversity: ~0.20x (5x faster)
            """)
    
    # Event handler
    generate_btn.click(
        generate_speech,
        inputs=[
            prompt_audio,
            prompt_text,
            target_text,
            mode,
            temperature,
            custom_teacher_steps,
            custom_teacher_stopping_time,
            custom_student_start_step,
            verbose
        ],
        outputs=[output_audio, status, metrics, info]
    )
    
    # Update visibility of custom settings based on mode
    def update_custom_visibility(mode):
        is_custom = (mode == "Custom")
        return gr.update(visible=is_custom)
    
    mode.change(
        update_custom_visibility,
        inputs=[mode],
        outputs=[custom_settings]
    )

# Launch the app
if __name__ == "__main__":
    if not model_loaded:
        print(f"Warning: Model failed to load - {status_message}")
    if not asr_pipe:
        print("Warning: ASR pipeline not available - auto-transcription disabled")
    
    demo.launch()