# part of the code is borrowed from https://github.com/lawlict/ECAPA-TDNN import torch import torch.nn as nn import torch.nn.functional as F import torchaudio.transforms as trans from ctcmodel import ConformerCTC # from ctcmodel_nopool import ConformerCTC as ConformerCTCNoPool from pathlib import Path ''' Res2Conv1d + BatchNorm1d + ReLU ''' class Res2Conv1dReluBn(nn.Module): ''' in_channels == out_channels == channels ''' def __init__(self, channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True, scale=4): super().__init__() assert channels % scale == 0, "{} % {} != 0".format(channels, scale) self.scale = scale self.width = channels // scale self.nums = scale if scale == 1 else scale - 1 self.convs = [] self.bns = [] for i in range(self.nums): self.convs.append(nn.Conv1d(self.width, self.width, kernel_size, stride, padding, dilation, bias=bias)) self.bns.append(nn.BatchNorm1d(self.width)) self.convs = nn.ModuleList(self.convs) self.bns = nn.ModuleList(self.bns) def forward(self, x): out = [] spx = torch.split(x, self.width, 1) for i in range(self.nums): if i == 0: sp = spx[i] else: sp = sp + spx[i] # Order: conv -> relu -> bn sp = self.convs[i](sp) sp = self.bns[i](F.relu(sp)) out.append(sp) if self.scale != 1: out.append(spx[self.nums]) out = torch.cat(out, dim=1) return out ''' Conv1d + BatchNorm1d + ReLU ''' class Conv1dReluBn(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True): super().__init__() self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias) self.bn = nn.BatchNorm1d(out_channels) def forward(self, x): return self.bn(F.relu(self.conv(x))) ''' The SE connection of 1D case. ''' class SE_Connect(nn.Module): def __init__(self, channels, se_bottleneck_dim=128): super().__init__() self.linear1 = nn.Linear(channels, se_bottleneck_dim) self.linear2 = nn.Linear(se_bottleneck_dim, channels) def forward(self, x): out = x.mean(dim=2) out = F.relu(self.linear1(out)) out = torch.sigmoid(self.linear2(out)) out = x * out.unsqueeze(2) return out ''' SE-Res2Block of the ECAPA-TDNN architecture. ''' class SE_Res2Block(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, scale, se_bottleneck_dim): super().__init__() self.Conv1dReluBn1 = Conv1dReluBn(in_channels, out_channels, kernel_size=1, stride=1, padding=0) self.Res2Conv1dReluBn = Res2Conv1dReluBn(out_channels, kernel_size, stride, padding, dilation, scale=scale) self.Conv1dReluBn2 = Conv1dReluBn(out_channels, out_channels, kernel_size=1, stride=1, padding=0) self.SE_Connect = SE_Connect(out_channels, se_bottleneck_dim) self.shortcut = None if in_channels != out_channels: self.shortcut = nn.Conv1d( in_channels=in_channels, out_channels=out_channels, kernel_size=1, ) def forward(self, x): residual = x if self.shortcut: residual = self.shortcut(x) x = self.Conv1dReluBn1(x) x = self.Res2Conv1dReluBn(x) x = self.Conv1dReluBn2(x) x = self.SE_Connect(x) return x + residual ''' Attentive weighted mean and standard deviation pooling. ''' class AttentiveStatsPool(nn.Module): def __init__(self, in_dim, attention_channels=128, global_context_att=False): super().__init__() self.global_context_att = global_context_att # Use Conv1d with stride == 1 rather than Linear, then we don't need to transpose inputs. if global_context_att: self.linear1 = nn.Conv1d(in_dim * 3, attention_channels, kernel_size=1) # equals W and b in the paper else: self.linear1 = nn.Conv1d(in_dim, attention_channels, kernel_size=1) # equals W and b in the paper self.linear2 = nn.Conv1d(attention_channels, in_dim, kernel_size=1) # equals V and k in the paper def forward(self, x): if self.global_context_att: context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x) context_std = torch.sqrt(torch.var(x, dim=-1, keepdim=True) + 1e-10).expand_as(x) x_in = torch.cat((x, context_mean, context_std), dim=1) else: x_in = x # DON'T use ReLU here! In experiments, I find ReLU hard to converge. alpha = torch.tanh(self.linear1(x_in)) # alpha = F.relu(self.linear1(x_in)) alpha = torch.softmax(self.linear2(alpha), dim=2) mean = torch.sum(alpha * x, dim=2) residuals = torch.sum(alpha * (x ** 2), dim=2) - mean ** 2 std = torch.sqrt(residuals.clamp(min=1e-9)) return torch.cat([mean, std], dim=1) class ECAPA_TDNN(nn.Module): def __init__(self, channels=512, emb_dim=512, global_context_att=False, use_fp16=True, ctc_cls=ConformerCTC, ctc_path='/data4/F5TTS/ckpts/F5TTS_norm_ASR_vocos_pinyin_Emilia_ZH_EN/model_last.pt', ctc_args={'vocab_size': 2545, 'mel_dim': 100, 'num_heads': 8, 'd_hid': 512, 'nlayers': 6}, ctc_no_grad=False ): super().__init__() if ctc_path != None: ctc_path = Path(ctc_path) model = ctc_cls(**ctc_args) state_dict = torch.load(ctc_path, map_location='cpu') model.load_state_dict(state_dict['model_state_dict']) print(f"Initialized pretrained ConformerCTC backbone from {ctc_path}.") else: raise ValueError(ctc_path) self.ctc_model = model self.ctc_model.out.requires_grad_(False) if ctc_cls == ConformerCTC: self.feat_num = ctc_args['nlayers'] + 2 + 1 # elif ctc_cls == ConformerCTCNoPool: # self.feat_num = ctc_args['nlayers'] + 1 else: raise ValueError(ctc_cls) feat_dim = ctc_args['d_hid'] self.emb_dim = emb_dim self.feature_weight = nn.Parameter(torch.zeros(self.feat_num)) self.instance_norm = nn.InstanceNorm1d(feat_dim) # self.channels = [channels] * 4 + [channels * 3] self.channels = [channels] * 4 + [1536] self.layer1 = Conv1dReluBn(feat_dim, self.channels[0], kernel_size=5, padding=2) self.layer2 = SE_Res2Block(self.channels[0], self.channels[1], kernel_size=3, stride=1, padding=2, dilation=2, scale=8, se_bottleneck_dim=128) self.layer3 = SE_Res2Block(self.channels[1], self.channels[2], kernel_size=3, stride=1, padding=3, dilation=3, scale=8, se_bottleneck_dim=128) self.layer4 = SE_Res2Block(self.channels[2], self.channels[3], kernel_size=3, stride=1, padding=4, dilation=4, scale=8, se_bottleneck_dim=128) # self.conv = nn.Conv1d(self.channels[-1], self.channels[-1], kernel_size=1) cat_channels = channels * 3 self.conv = nn.Conv1d(cat_channels, self.channels[-1], kernel_size=1) self.pooling = AttentiveStatsPool(self.channels[-1], attention_channels=128, global_context_att=global_context_att) self.bn = nn.BatchNorm1d(self.channels[-1] * 2) self.linear = nn.Linear(self.channels[-1] * 2, emb_dim) if ctc_no_grad: for param in self.ctc_model.parameters(): param.requires_grad = False self.ctc_model = self.ctc_model.eval() else: self.ctc_model = self.ctc_model.train() self.ctc_no_grad = ctc_no_grad print('ctc_no_grad: ', self.ctc_no_grad) def forward(self, latent, input_lengths, return_asr=False): if self.ctc_no_grad: with torch.no_grad(): asr, h = self.ctc_model(latent, input_lengths) else: asr, h = self.ctc_model(latent, input_lengths) x = torch.stack(h, dim=0) norm_weights = F.softmax(self.feature_weight, dim=-1).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) x = (norm_weights * x).sum(dim=0) x = x + 1e-6 # x = torch.transpose(x, 1, 2) + 1e-6 x = self.instance_norm(x) # x = torch.transpose(x, 1, 2) out1 = self.layer1(x) out2 = self.layer2(out1) out3 = self.layer3(out2) out4 = self.layer4(out3) out = torch.cat([out2, out3, out4], dim=1) out = F.relu(self.conv(out)) out = self.bn(self.pooling(out)) out = self.linear(out) if return_asr: return out, asr return out if __name__ == "__main__": from diffspeech.ldm.model import DiT from diffspeech.data.collate import get_mask_from_lengths from diffspeech.tools.text.vocab import IPA bsz = 3 # Sample ipa ipa_lens = torch.randint(10, 50, (bsz,)).cuda() ipa_mask = get_mask_from_lengths(ipa_lens).cuda() ipa = torch.randint(0, len(IPA.vocab), (bsz, ipa_mask.size(-1))).cuda() # Sample latent latent_lens = torch.randint(50, 250, (bsz,)).cuda() latent_mask = get_mask_from_lengths(latent_lens).cuda() latent = torch.randn(bsz, latent_mask.size(-1), 64).cuda() # Sample prompt prompt_mask = get_mask_from_lengths( (latent_lens * 0.25).long(), max_len=latent_mask.size(-1) ).cuda() prompt_latent = latent * prompt_mask.unsqueeze(-1) model = ECAPA_TDNN(emb_dim=512).cuda() emb = model(latent, latent_mask.sum(axis=-1)) print(emb.shape)