ylingag's picture
Update app.py
8581f88 verified
# import part
import streamlit as st
from transformers import pipeline
# function part
# image2text
def img2text(img):
image_to_text_model = pipeline("image-to-text",
model="nlpconnect/vit-gpt2-image-captioning")
text = image_to_text_model(img)[0]["generated_text"]
return text
# text2story
def text2story(text):
text_generation_model = pipeline("text-generation",
model="openai-community/gpt2")
story_text = f"Once upon a time in a land far, far away, {text}"
generated_story = text_generation_model(story_text,
max_length=100,
num_return_sequences=1)
return generated_story[0]['generated_text']
# text2audio
def text2audio(story_text):
text_to_speech_model = pipeline("text-to-speech", model="facebook/mms-tts-eng")
speech_output = text_to_speech_model(story_text)
return speech_output
# main part
st.title("Storytelling Application")
st.write("🎉Transfer an image to a short story with audio.🎉---From ✨LING Yunhan 21010943 ISOM5240 (L2)✨")
uploaded_file = st.file_uploader("Choose an image📷...", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
print(uploaded_file)
bytes_data = uploaded_file.getvalue()
with open(uploaded_file.name, "wb") as file:
file.write(bytes_data)
st.image(uploaded_file, caption="Uploaded Image", use_container_width=True)
# stage 1
st.text('Generating caption✍...')
scenario = img2text(uploaded_file.name)
st.write(scenario)
# stage 2
st.text('Generating story📚...')
generated_story = text2story(scenario)
# Use the scenario from img2text
st.write(generated_story)
# stage 3
st.text('Generating audio💽...')
audio_data = text2audio(generated_story)
if st.button("Play Audio🍩"):
st.audio(audio_data['audio'],
format="audio/wav",
start_time=0,
sample_rate=audio_data['sampling_rate'])