# import part import streamlit as st from transformers import pipeline # function part # image2text def img2text(img): image_to_text_model = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning") text = image_to_text_model(img)[0]["generated_text"] return text # text2story def text2story(text): text_generation_model = pipeline("text-generation", model="openai-community/gpt2") story_text = f"Once upon a time in a land far, far away, {text}" generated_story = text_generation_model(story_text, max_length=100, num_return_sequences=1) return generated_story[0]['generated_text'] # text2audio def text2audio(story_text): text_to_speech_model = pipeline("text-to-speech", model="facebook/mms-tts-eng") speech_output = text_to_speech_model(story_text) return speech_output # main part st.title("Storytelling Application") st.write("🎉Transfer an image to a short story with audio.🎉---From ✨LING Yunhan 21010943 ISOM5240 (L2)✨") uploaded_file = st.file_uploader("Choose an image📷...", type=["jpg", "png", "jpeg"]) if uploaded_file is not None: print(uploaded_file) bytes_data = uploaded_file.getvalue() with open(uploaded_file.name, "wb") as file: file.write(bytes_data) st.image(uploaded_file, caption="Uploaded Image", use_container_width=True) # stage 1 st.text('Generating caption✍...') scenario = img2text(uploaded_file.name) st.write(scenario) # stage 2 st.text('Generating story📚...') generated_story = text2story(scenario) # Use the scenario from img2text st.write(generated_story) # stage 3 st.text('Generating audio💽...') audio_data = text2audio(generated_story) if st.button("Play Audio🍩"): st.audio(audio_data['audio'], format="audio/wav", start_time=0, sample_rate=audio_data['sampling_rate'])