File size: 12,260 Bytes
c726c9b
 
 
 
 
 
 
 
 
49394d0
c726c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import gradio as gr
import json
import os
import torch
import nltk
import spacy
import re
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline, AutoModelForSeq2SeqLM

# Download necessary NLTK data for sentence tokenizations
try:
    nltk.data.find('tokenizers/punkt')
except LookupError:
    nltk.download('punkt')

SUMMARY_FILE = "training_summary.json"
# Assume label meanings are consistent with previous files
LABEL_MAP = {0: "Negative", 1: "Neutral", 2: "Positive"}
# Color coding for sentiment
COLOR_MAP = {
    "Negative": "red",
    "Neutral": "blue",
    "Positive": "green"
}

# Global loading of models and NLP components
loaded_model = None
loaded_tokenizer = None
best_model_summary = None
summarizer = None
nlp = None  # For NER

def load_models_and_components():
    global loaded_model, loaded_tokenizer, best_model_summary, summarizer, nlp
    
    # Load sentiment analysis model from training
    if not os.path.exists(SUMMARY_FILE):
        raise FileNotFoundError(f"Error: Could not find training summary file {SUMMARY_FILE}. Please run the fine-tuning and testing scripts first.")

    with open(SUMMARY_FILE, 'r') as f:
        summary_data = json.load(f)

    if "best_model_details" not in summary_data or not summary_data["best_model_details"]:
        raise ValueError(f"Error: Best model information not found or incomplete in {SUMMARY_FILE}.")
    
    best_model_summary = summary_data["best_model_details"]
    best_model_path = best_model_summary.get("best_model_path")
    
    if not best_model_path:
        best_model_path = summary_data.get("best_model_path") # Compatible with older format

    if not best_model_path or not os.path.exists(best_model_path):
        raise FileNotFoundError(f"Error: Best model path {best_model_path} not found or invalid.")
    
    print(f"Loading sentiment model {best_model_summary['model_name']} from {best_model_path}...")
    try:
        loaded_tokenizer = AutoTokenizer.from_pretrained(best_model_path)
        loaded_model = AutoModelForSequenceClassification.from_pretrained(best_model_path)
        loaded_model.eval() # Set to evaluation mode
        print("Sentiment model loaded successfully.")
    except Exception as e:
        raise RuntimeError(f"Failed to load sentiment model: {e}")
    
    # Load summarization model
    print("Loading summarization model...")
    try:
        summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
        print("Summarization model loaded successfully.")
    except Exception as e:
        print(f"Warning: Failed to load summarization model: {e}")
        print("Will continue without summarization capability.")
        summarizer = None
    
    # Load spaCy model for NER (Named Entity Recognition)
    print("Loading NER model...")
    try:
        # Download the model if it's not already downloaded
        if not spacy.util.is_package("en_core_web_sm"):
            spacy.cli.download("en_core_web_sm")
        nlp = spacy.load("en_core_web_sm")
        print("NER model loaded successfully.")
    except Exception as e:
        print(f"Warning: Failed to load NER model: {e}")
        print("Will continue without NER capability.")
        nlp = None

def predict_sentiment(text):
    """Predict sentiment for a single piece of text"""
    global loaded_model, loaded_tokenizer
    if not loaded_model or not loaded_tokenizer:
        return "Error: Model not loaded.", None
    
    if not text or not text.strip():
        return "Please enter text for analysis.", None

    try:
        inputs = loaded_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
        
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        loaded_model.to(device)
        inputs = {k: v.to(device) for k, v in inputs.items()}
        
        with torch.no_grad():
            outputs = loaded_model(**inputs)
        
        prediction_idx = torch.argmax(outputs.logits, dim=-1).item()
        sentiment = LABEL_MAP.get(prediction_idx, f"Unknown ({prediction_idx})")
        return sentiment, prediction_idx
    except Exception as e:
        print(f"Error during sentiment prediction: {e}")
        return f"Error: {str(e)}", None

def generate_summary(text):
    """Generate a summary for longer text"""
    global summarizer
    if not summarizer:
        return "Summarization model not available."
    
    if not text or len(text.strip()) < 50:
        return "Text too short for summarization."
    
    try:
        # BART has a max length, so we'll truncate if needed
        max_length = min(1024, len(text.split()))
        summary = summarizer(text, max_length=max_length//4, min_length=30, do_sample=False)
        return summary[0]['summary_text']
    except Exception as e:
        print(f"Error during summarization: {e}")
        return f"Summarization error: {str(e)}"

def identify_entities(text):
    """Identify locations and organizations in the text"""
    global nlp
    if not nlp:
        return "NER model not available."
    
    if not text or not text.strip():
        return "Please enter text for entity analysis."
    
    try:
        doc = nlp(text)
        locations = []
        organizations = []
        
        for ent in doc.ents:
            if ent.label_ == "GPE" or ent.label_ == "LOC":  # Geopolitical entity or Location
                locations.append(ent.text)
            elif ent.label_ == "ORG":  # Organization
                organizations.append(ent.text)
        
        # Remove duplicates and sort
        locations = sorted(list(set(locations)))
        organizations = sorted(list(set(organizations)))
        
        return {
            "locations": locations,
            "organizations": organizations
        }
    except Exception as e:
        print(f"Error during entity identification: {e}")
        return f"Entity identification error: {str(e)}"

def format_entities(entities):
    """Format identified entities for display"""
    if isinstance(entities, str):  # Error message
        return entities
    
    formatted = "<h3>Interested Parties</h3>"
    
    # Add locations in red
    if entities["locations"]:
        formatted += "<p><b>Locations:</b> "
        formatted += ", ".join([f"<span style='color: red'>{loc}</span>" for loc in entities["locations"]])
        formatted += "</p>"
    else:
        formatted += "<p><b>Locations:</b> None identified</p>"
    
    # Add organizations in green
    if entities["organizations"]:
        formatted += "<p><b>Organizations:</b> "
        formatted += ", ".join([f"<span style='color: green'>{org}</span>" for org in entities["organizations"]])
        formatted += "</p>"
    else:
        formatted += "<p><b>Organizations:</b> None identified</p>"
    
    return formatted

def analyze_text_sentiment_by_sentence(text):
    """Analyze sentiment of each sentence in the text and format with colors"""
    if not text or not text.strip():
        return "Please enter text for analysis."
    
    try:
        # Split text into sentences
        sentences = nltk.sent_tokenize(text)
        formatted_result = ""
        
        for sentence in sentences:
            if len(sentence.strip()) < 3:  # Skip very short sentences
                continue
                
            sentiment, _ = predict_sentiment(sentence)
            color = COLOR_MAP.get(sentiment, "black")
            
            formatted_result += f"<span style='color: {color}'>{sentence}</span> "
            
        return formatted_result if formatted_result else "No valid sentences found for analysis."
    except Exception as e:
        print(f"Error during sentence-level sentiment analysis: {e}")
        return f"Error: {str(e)}"

def analyze_financial_text(text):
    """Master function that performs all analysis tasks"""
    if not text or not text.strip():
        return "Please enter text for analysis.", "No summary available.", "No entities identified."
    
    # Generate summary
    summary = generate_summary(text)
    
    # Perform sentence-level sentiment analysis
    sentiment_analysis = analyze_text_sentiment_by_sentence(text)
    
    # Identify entities
    entities = identify_entities(text)
    formatted_entities = format_entities(entities)
    
    return sentiment_analysis, summary, formatted_entities

# Try to load models at app startup
try:
    load_models_and_components()
except Exception as e:
    print(f"Initial model loading failed: {e}")
    # Gradio interface will still start, but functionality will be limited

# Build Gradio interface
model_info = "### Model Information\n"
if best_model_summary:
    model_name = best_model_summary.get("model_name", "N/A")
    accuracy = best_model_summary.get("accuracy_percent", "N/A")
    run_time = best_model_summary.get("run_time_sec", "N/A")
    hyperparams = best_model_summary.get("hyperparameters", {})
    
    model_info += f"- **Model Name**: {model_name}\n"
    model_info += f"- **Model Accuracy**: {accuracy}%\n"
    model_info += f"- **Description**: The model is trained and fine-tuned using the financial news dataset to improve its sensitivity in recognizing financial sentiment.\n"
    
    # Add hyperparameters
    model_info += "\n### Hyperparameters\n"
    model_info += f"- **Learning Rate**: {hyperparams.get('learning_rate', 'N/A')}\n"
    model_info += f"- **Batch Size**: {hyperparams.get('batch_size', 'N/A')}\n"
    model_info += f"- **Number of Epochs**: {hyperparams.get('num_epochs', 'N/A')}\n"
else:
    model_info += "Model information loading failed. Please check the `training_summary.json` file and backend logs."

# Gradio interface definition
app_title = "ISOM5240_financial_tone"
app_description = (
    "Analyze financial news text to extract summary, sentiment, and identify interested parties. "
    "The sentiment analysis model is fine-tuned on financial news data."
)

with gr.Blocks(title=app_title) as iface:
    gr.Markdown(f"# {app_title}")
    gr.Markdown(app_description)
    
    with gr.Row():
        with gr.Column(scale=2):
            input_text = gr.Textbox(
                lines=10, 
                label="Financial News Text", 
                placeholder="Enter a longer financial news text here for analysis..."
            )
            analyze_btn = gr.Button("Start Analysis", variant="primary")
        
        with gr.Column(scale=1):
            gr.Markdown(model_info)
            
    with gr.Row():
        with gr.Column():
            gr.Markdown("### Text Summary")
            summary_output = gr.Textbox(label="Summary", lines=3)
            
    with gr.Row():
        with gr.Column():
            gr.Markdown("### Sentiment Analysis (Sentence-level)")
            gr.Markdown("- <span style='color: green'>Green</span>: Positive")
            gr.Markdown("- <span style='color: blue'>Blue</span>: Neutral")
            gr.Markdown("- <span style='color: red'>Red</span>: Negative")
            sentiment_output = gr.HTML(label="Sentiment")
            
    with gr.Row():
        with gr.Column():
            entities_output = gr.HTML(label="Interested Parties")
    
    # Set up the click event for the analyze button
    analyze_btn.click(
        fn=analyze_financial_text, 
        inputs=[input_text], 
        outputs=[sentiment_output, summary_output, entities_output]
    )
    
    # Add examples
    gr.Examples(
        [
            ["The Federal Reserve announced today that interest rates will remain unchanged. Markets responded positively, with the S&P 500 gaining 1.2%. However, smaller tech companies in Silicon Valley expressed concerns about potential future rate hikes affecting their access to capital."],
            ["Apple Inc. reported record quarterly revenue of $91.8 billion, an increase of 9% from the year-ago quarter. The company's CEO Tim Cook attributed this success to strong international sales, particularly in European markets and China. However, supply chain disruptions in Taiwan may impact future quarters."]
        ],
        inputs=input_text
    )

if __name__ == "__main__":
    print("Starting Gradio application...")
    # share=True will generate a public link
    iface.launch(share=True)