from sentence_transformers import SentenceTransformer from Rag import load_json_to_db, make_embeddings, save_embeddings # Adjust import def precompute_and_save(embedder_name, db_path): print("Loading database...") db = load_json_to_db(db_path) print(f"Loading embedder: {embedder_name}") model = SentenceTransformer(embedder_name, trust_remote_code=True) print("Computing embeddings...") embeddings = make_embeddings(model, embedder_name, db) print("Saving embeddings...") save_embeddings(embedder_name, embeddings) print("Done.") if __name__ == "__main__": embedder_name = "Qwen/Qwen3-Embedding-0.6B" # Example embedder name db_path = "../data/processed/guideline_db.json" precompute_and_save(embedder_name, db_path)