Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import random | |
USERS = ['user1', 'user2', 'user3'] | |
df_per_user = {} | |
df = pd.read_csv("data.csv") | |
df['score'] = None | |
df['assignee'] = random.choices(USERS, k=len(df)) | |
for u in USERS: | |
df_per_user[u] = df[df.assignee == u].to_dict('records') | |
with gr.Blocks() as demo: | |
dataset_df = {} | |
state = gr.State(value=-1) | |
with gr.Row(): | |
gr.Markdown("# Distributed Evaluation Parallel π") | |
with gr.Row(): | |
prev = gr.Button(value="Previous") | |
next = gr.Button(value="Next") | |
download = gr.File(label="Download a file") | |
with gr.Row(): | |
with gr.Column(): | |
question = gr.Textbox(label="Question") | |
with gr.Column(): | |
ground_truth = gr.Textbox(label="GT") | |
with gr.Column(): | |
prediction = gr.Textbox(label="Prediction") | |
score = gr.Radio(choices=["Incorrect", "Correct"], label="Score") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("## TODO") | |
todos = gr.DataFrame() | |
with gr.Column(): | |
gr.Markdown("## DONE") | |
done = gr.DataFrame() | |
def prev_func(score, request: gr.Request): | |
df_dict = df_per_user[request.username] | |
state.value = max(state.value - 1, 0) | |
score = df_dict[state.value]['score'] | |
gr.Info(f"{request.username}λ, μ΄ {len(df_dict)}κ° μ€μ {state.value + 1}λ²μ§Έ λ°μ΄ν°μ λλ€.") | |
return [*update(request.username), score] | |
def next_func(score, request: gr.Request): | |
df_dict = df_per_user[request.username] | |
df_dict[state.value]['score'] = score | |
state.value = min(state.value + 1, len(df_dict) - 1) | |
score = df_dict[state.value]['score'] | |
gr.Info(f"{request.username}λ, μ΄ {len(df_dict)}κ° μ€μ {state.value + 1}λ²μ§Έ λ°μ΄ν°μ λλ€.") | |
return [*update(request.username), score] | |
def update(username): | |
df_dict = df_per_user[username] | |
q = df_dict[state.value]['question'] | |
g = df_dict[state.value]['answer'] | |
p = df_dict[state.value]['prediction'] | |
df = pd.DataFrame(df_dict) | |
todos = df[df.score.isna()] | |
done = df[df.score.isna() == False] | |
filename = f"done_{username}.csv" | |
done.to_csv(filename, index=False) | |
return q, g, p, todos, done, filename | |
prev.click(prev_func, [score], [question, ground_truth, prediction, todos, done, download, score]) | |
next.click(next_func, [score], [question, ground_truth, prediction, todos, done, download, score]) | |
demo.queue(concurrency_count=10) | |
demo.launch(auth=[(u, u) for u in USERS]) |