File size: 25,080 Bytes
162ee47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
"""
GAIA-Ready AI Agent using smolagents framework

This agent is designed to meet the requirements of the Hugging Face Agents Course
and perform well on the GAIA benchmark. It implements the Think-Act-Observe workflow
and includes tools for web search, calculation, image analysis, and code execution.
"""

import os
import json
import base64
import requests
from typing import List, Dict, Any, Optional, Union, Callable
import re
import time
from datetime import datetime
import traceback

# Install required packages if not already installed
try:
    from smolagents import Agent, InferenceClientModel, Tool
    from smolagents.memory import Memory
except ImportError:
    import subprocess
    subprocess.check_call(["pip", "install", "smolagents"])
    from smolagents import Agent, InferenceClientModel, Tool
    from smolagents.memory import Memory

try:
    import numpy as np
    import matplotlib.pyplot as plt
    from PIL import Image
    import io
except ImportError:
    import subprocess
    subprocess.check_call(["pip", "install", "numpy", "matplotlib", "pillow"])
    import numpy as np
    import matplotlib.pyplot as plt
    from PIL import Image
    import io

try:
    import requests
    from bs4 import BeautifulSoup
except ImportError:
    import subprocess
    subprocess.check_call(["pip", "install", "requests", "beautifulsoup4"])
    import requests
    from bs4 import BeautifulSoup


class MemoryManager:
    """
    Custom memory manager for the agent that maintains short-term, long-term,
    and working memory.
    """
    def __init__(self):
        self.short_term_memory = []  # Current conversation context
        self.long_term_memory = []   # Key facts and results
        self.working_memory = {}     # Temporary storage for complex tasks
        self.max_short_term_items = 10
        self.max_long_term_items = 50
    
    def add_to_short_term(self, item: Dict[str, Any]) -> None:
        """Add an item to short-term memory, maintaining size limit"""
        self.short_term_memory.append(item)
        if len(self.short_term_memory) > self.max_short_term_items:
            self.short_term_memory.pop(0)
    
    def add_to_long_term(self, item: Dict[str, Any]) -> None:
        """Add an important item to long-term memory, maintaining size limit"""
        self.long_term_memory.append(item)
        if len(self.long_term_memory) > self.max_long_term_items:
            self.long_term_memory.pop(0)
    
    def store_in_working_memory(self, key: str, value: Any) -> None:
        """Store a value in working memory under the specified key"""
        self.working_memory[key] = value
    
    def get_from_working_memory(self, key: str) -> Optional[Any]:
        """Retrieve a value from working memory by key"""
        return self.working_memory.get(key)
    
    def clear_working_memory(self) -> None:
        """Clear the working memory"""
        self.working_memory = {}
    
    def get_relevant_memories(self, query: str) -> List[Dict[str, Any]]:
        """
        Retrieve memories relevant to the current query
        Simple implementation using keyword matching
        """
        relevant_memories = []
        query_keywords = set(query.lower().split())
        
        # Check long-term memory first
        for memory in self.long_term_memory:
            memory_text = memory.get("content", "").lower()
            if any(keyword in memory_text for keyword in query_keywords):
                relevant_memories.append(memory)
        
        # Then check short-term memory
        for memory in self.short_term_memory:
            memory_text = memory.get("content", "").lower()
            if any(keyword in memory_text for keyword in query_keywords):
                relevant_memories.append(memory)
        
        return relevant_memories
    
    def get_memory_summary(self) -> str:
        """Get a summary of the current memory state for the agent"""
        short_term_summary = "\n".join([f"- {m.get('content', '')}" for m in self.short_term_memory[-5:]])
        long_term_summary = "\n".join([f"- {m.get('content', '')}" for m in self.long_term_memory[-5:]])
        working_memory_summary = "\n".join([f"- {k}: {v}" for k, v in self.working_memory.items()])
        
        return f"""
MEMORY SUMMARY:
--------------
Recent Short-Term Memory:
{short_term_summary}

Important Long-Term Memory:
{long_term_summary}

Working Memory:
{working_memory_summary}
"""


# Tool implementations

def web_search_function(query: str) -> str:
    """
    Search the web for information using a search API
    
    Args:
        query: The search query
        
    Returns:
        Search results as a string
    """
    try:
        # Using a public search API (replace with your preferred API)
        url = f"https://ddg-api.herokuapp.com/search?query={query}"
        response = requests.get(url)
        
        if response.status_code == 200:
            results = response.json()
            formatted_results = []
            
            for i, result in enumerate(results[:5]):  # Limit to top 5 results
                title = result.get('title', 'No title')
                snippet = result.get('snippet', 'No snippet')
                link = result.get('link', 'No link')
                formatted_results.append(f"{i+1}. {title}\n   {snippet}\n   URL: {link}\n")
            
            return "Search Results:\n" + "\n".join(formatted_results)
        else:
            return f"Error: Search request failed with status code {response.status_code}"
    except Exception as e:
        return f"Error performing web search: {str(e)}"


def web_page_content_function(url: str) -> str:
    """
    Fetch and extract content from a web page
    
    Args:
        url: The URL of the web page to fetch
        
    Returns:
        Extracted content as a string
    """
    try:
        headers = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
        }
        response = requests.get(url, headers=headers)
        
        if response.status_code == 200:
            soup = BeautifulSoup(response.text, 'html.parser')
            
            # Remove script and style elements
            for script in soup(["script", "style"]):
                script.extract()
            
            # Extract text
            text = soup.get_text()
            
            # Clean up text
            lines = (line.strip() for line in text.splitlines())
            chunks = (phrase.strip() for line in lines for phrase in line.split("  "))
            text = '\n'.join(chunk for chunk in chunks if chunk)
            
            # Limit length to avoid overwhelming the model
            if len(text) > 4000:
                text = text[:4000] + "...\n[Content truncated due to length]"
            
            return f"Content from {url}:\n\n{text}"
        else:
            return f"Error: Failed to fetch web page with status code {response.status_code}"
    except Exception as e:
        return f"Error fetching web page content: {str(e)}"


def calculator_function(expression: str) -> str:
    """
    Evaluate a mathematical expression
    
    Args:
        expression: The mathematical expression to evaluate
        
    Returns:
        Result of the calculation as a string
    """
    try:
        # Clean the expression to ensure it's safe to evaluate
        # Remove any characters that aren't digits, operators, or parentheses
        clean_expr = re.sub(r'[^0-9+\-*/().^ ]', '', expression)
        
        # Replace ^ with ** for exponentiation
        clean_expr = clean_expr.replace('^', '**')
        
        # Evaluate the expression
        result = eval(clean_expr)
        
        return f"Expression: {expression}\nResult: {result}"
    except Exception as e:
        return f"Error calculating result: {str(e)}"


def python_executor_function(code: str) -> str:
    """
    Execute Python code and return the result
    
    Args:
        code: The Python code to execute
        
    Returns:
        Output of the code execution as a string
    """
    try:
        # Create a string buffer to capture output
        from io import StringIO
        import sys
        
        old_stdout = sys.stdout
        redirected_output = StringIO()
        sys.stdout = redirected_output
        
        # Execute the code
        exec_globals = {
            "np": np,
            "plt": plt,
            "requests": requests,
            "BeautifulSoup": BeautifulSoup,
            "Image": Image,
            "io": io,
            "json": json,
            "base64": base64,
            "re": re,
            "time": time,
            "datetime": datetime
        }
        
        exec(code, exec_globals)
        
        # Restore stdout and get the output
        sys.stdout = old_stdout
        output = redirected_output.getvalue()
        
        return f"Code executed successfully:\n\n{output}"
    except Exception as e:
        return f"Error executing Python code: {str(e)}\n{traceback.format_exc()}"


def image_analyzer_function(image_url: str) -> str:
    """
    Analyze an image and provide a description
    
    Args:
        image_url: URL of the image to analyze
        
    Returns:
        Description of the image as a string
    """
    try:
        # Fetch the image
        response = requests.get(image_url)
        
        if response.status_code == 200:
            # Convert to base64 for inclusion in the response
            image_data = base64.b64encode(response.content).decode('utf-8')
            
            # In a real implementation, you would use a vision model here
            # For now, we'll return a placeholder response
            return f"""
Image Analysis:
- Successfully retrieved image from {image_url}
- Image size: {len(response.content)} bytes

[Note: In a production environment, this would use a vision model to analyze the image content]

To properly analyze this image, please describe what you see in the image.
"""
        else:
            return f"Error: Failed to fetch image with status code {response.status_code}"
    except Exception as e:
        return f"Error analyzing image: {str(e)}"


def text_processor_function(text: str, operation: str) -> str:
    """
    Process and analyze text
    
    Args:
        text: The text to process
        operation: The operation to perform (summarize, analyze_sentiment, extract_keywords)
        
    Returns:
        Processed text as a string
    """
    try:
        if operation == "summarize":
            # Simple extractive summarization
            sentences = text.split('. ')
            if len(sentences) <= 3:
                return f"Summary: {text}"
            
            # Take first and last sentences, plus one from the middle
            summary = f"{sentences[0]}. {sentences[len(sentences)//2]}. {sentences[-1]}"
            return f"Summary: {summary}"
            
        elif operation == "analyze_sentiment":
            # Very simple sentiment analysis
            positive_words = ['good', 'great', 'excellent', 'positive', 'happy', 'love', 'like']
            negative_words = ['bad', 'poor', 'negative', 'unhappy', 'hate', 'dislike']
            
            text_lower = text.lower()
            positive_count = sum(1 for word in positive_words if word in text_lower)
            negative_count = sum(1 for word in negative_words if word in text_lower)
            
            if positive_count > negative_count:
                sentiment = "positive"
            elif negative_count > positive_count:
                sentiment = "negative"
            else:
                sentiment = "neutral"
                
            return f"Sentiment Analysis: {sentiment} (positive words: {positive_count}, negative words: {negative_count})"
            
        elif operation == "extract_keywords":
            # Simple keyword extraction
            import re
            from collections import Counter
            
            # Remove punctuation and convert to lowercase
            text_clean = re.sub(r'[^\w\s]', '', text.lower())
            
            # Remove common stop words
            stop_words = ['the', 'a', 'an', 'and', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by']
            words = [word for word in text_clean.split() if word not in stop_words and len(word) > 2]
            
            # Count word frequencies
            word_counts = Counter(words)
            
            # Get top 10 keywords
            keywords = [word for word, count in word_counts.most_common(10)]
            
            return f"Keywords: {', '.join(keywords)}"
        else:
            return f"Error: Unknown operation '{operation}'. Supported operations: summarize, analyze_sentiment, extract_keywords"
    except Exception as e:
        return f"Error processing text: {str(e)}"


def file_manager_function(operation: str, filename: str, content: str = None) -> str:
    """
    Save and load data from files
    
    Args:
        operation: The operation to perform (save, load)
        filename: The name of the file
        content: The content to save (for save operation)
        
    Returns:
        Result of the operation as a string
    """
    try:
        if operation == "save":
            if content is None:
                return "Error: Content is required for save operation"
            
            with open(filename, 'w') as f:
                f.write(content)
            
            return f"Successfully saved content to {filename}"
            
        elif operation == "load":
            if not os.path.exists(filename):
                return f"Error: File {filename} does not exist"
            
            with open(filename, 'r') as f:
                content = f.read()
            
            return f"Content of {filename}:\n\n{content}"
        else:
            return f"Error: Unknown operation '{operation}'. Supported operations: save, load"
    except Exception as e:
        return f"Error managing file: {str(e)}"


class GAIAAgent:
    """
    AI Agent designed to perform well on the GAIA benchmark
    Implements the Think-Act-Observe workflow
    """
    def __init__(self, api_key=None, use_local_model=False):
        self.memory_manager = MemoryManager()
        
        # Initialize the LLM model
        if use_local_model:
            # Use Ollama for local model
            try:
                from smolagents import LiteLLMModel
                self.model = LiteLLMModel(
                    model_id="ollama_chat/qwen2:7b",
                    api_base="http://127.0.0.1:11434",
                    num_ctx=8192,
                )
            except Exception as e:
                print(f"Error initializing local model: {str(e)}")
                print("Falling back to Hugging Face Inference API")
                self.model = InferenceClientModel(
                    model_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
                    api_key=api_key or os.environ.get("HF_API_KEY", "")
                )
        else:
            # Use Hugging Face Inference API
            self.model = InferenceClientModel(
                model_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
                api_key=api_key or os.environ.get("HF_API_KEY", "")
            )
        
        # Define tools
        self.tools = [
            Tool(
                name="web_search",
                description="Search the web for information",
                function=web_search_function
            ),
            Tool(
                name="web_page_content",
                description="Fetch and extract content from a web page",
                function=web_page_content_function
            ),
            Tool(
                name="calculator",
                description="Perform mathematical calculations",
                function=calculator_function
            ),
            Tool(
                name="image_analyzer",
                description="Analyze image content",
                function=image_analyzer_function
            ),
            Tool(
                name="python_executor",
                description="Execute Python code",
                function=python_executor_function
            ),
            Tool(
                name="text_processor",
                description="Process and analyze text",
                function=text_processor_function
            ),
            Tool(
                name="file_manager",
                description="Save and load data from files",
                function=file_manager_function
            )
        ]
        
        # System prompt
        self.system_prompt = """
You are an advanced AI assistant designed to solve complex tasks from the GAIA benchmark.
You have access to various tools that can help you solve these tasks.

Always follow the Think-Act-Observe workflow:
1. Think: Carefully analyze the task and plan your approach
2. Act: Use appropriate tools to gather information or perform actions
3. Observe: Analyze the results of your actions and adjust your approach if needed

For complex tasks, break them down into smaller steps.
Always verify your answers before submitting them.

When using tools:
- web_search: Use to find information online
- web_page_content: Use to extract content from specific web pages
- calculator: Use for mathematical calculations
- image_analyzer: Use to analyze image content
- python_executor: Use to run Python code for complex operations
- text_processor: Use to process and analyze text (summarize, analyze_sentiment, extract_keywords)
- file_manager: Use to save and load data from files (save, load)

Be thorough, methodical, and precise in your reasoning.
"""
        
        # Initialize the agent
        self.agent = Agent(
            model=self.model,
            tools=self.tools,
            system_prompt=self.system_prompt
        )
    
    def think(self, query):
        """
        Analyze the task and plan an approach
        
        Args:
            query: The user's query or task
            
        Returns:
            Dictionary containing analysis and plan
        """
        # Retrieve relevant memories
        relevant_memories = self.memory_manager.get_relevant_memories(query)
        
        # Construct a thinking prompt
        thinking_prompt = f"""
TASK: {query}

RELEVANT MEMORIES:
{relevant_memories if relevant_memories else "No relevant memories found."}

Please analyze this task and create a plan:
1. What is this task asking for?
2. What information do I need to solve it?
3. What tools would be most helpful?
4. What steps should I take to solve it?

Provide your analysis and plan.
"""
        
        # Use the agent to generate a plan
        response = self.agent.chat(thinking_prompt)
        
        # Store the thinking in memory
        self.memory_manager.add_to_short_term({
            "type": "thinking",
            "content": response,
            "timestamp": datetime.now().isoformat()
        })
        
        # Extract plan components (in a real implementation, this would be more structured)
        return {
            "analysis": response,
            "plan": response  # For now, we're using the full response as the plan
        }
    
    def act(self, plan, query):
        """
        Execute actions based on the plan
        
        Args:
            plan: The plan generated by the think step
            query: The original query
            
        Returns:
            Results of the actions
        """
        # Use the agent to determine which tools to use based on the plan
        tool_selection_prompt = f"""
TASK: {query}

MY PLAN:
{plan['plan']}

Based on this plan, which tool should I use first and with what parameters?
Respond in the following format:
TOOL: [tool name]
PARAMETERS: [parameters for the tool]
REASONING: [why this tool is appropriate]
"""
        
        tool_selection = self.agent.chat(tool_selection_prompt)
        
        # Store the tool selection in memory
        self.memory_manager.add_to_short_term({
            "type": "tool_selection",
            "content": tool_selection,
            "timestamp": datetime.now().isoformat()
        })
        
        # Execute the selected tool (in a real implementation, this would parse the tool selection more robustly)
        # For now, we'll use the agent's built-in tool execution
        action_prompt = f"""
TASK: {query}

MY PLAN:
{plan['plan']}

TOOL SELECTION:
{tool_selection}

Please execute the appropriate tool to help solve this task.
"""
        
        action_result = self.agent.chat(action_prompt)
        
        # Store the action result in memory
        self.memory_manager.add_to_short_term({
            "type": "action_result",
            "content": action_result,
            "timestamp": datetime.now().isoformat()
        })
        
        return action_result
    
    def observe(self, action_result, plan, query):
        """
        Analyze the results of actions and determine next steps
        
        Args:
            action_result: Results from the act step
            plan: The original plan
            query: The original query
            
        Returns:
            Observation and next steps
        """
        observation_prompt = f"""
TASK: {query}

MY PLAN:
{plan['plan']}

ACTION RESULT:
{action_result}

Please analyze these results:
1. What did I learn from this action?
2. Does this fully answer the original task?
3. If not, what should I do next?
4. If yes, what is the final answer?

Provide your analysis and next steps or final answer.
"""
        
        observation = self.agent.chat(observation_prompt)
        
        # Store the observation in memory
        self.memory_manager.add_to_short_term({
            "type": "observation",
            "content": observation,
            "timestamp": datetime.now().isoformat()
        })
        
        # Check if we need to continue with more actions
        if "next steps" in observation.lower() or "next tool" in observation.lower():
            continue_execution = True
        else:
            # If it seems like we have a final answer, store it in long-term memory
            self.memory_manager.add_to_long_term({
                "type": "final_answer",
                "query": query,
                "content": observation,
                "timestamp": datetime.now().isoformat()
            })
            continue_execution = False
        
        return {
            "observation": observation,
            "continue": continue_execution
        }
    
    def solve(self, query, max_iterations=5):
        """
        Solve a task using the Think-Act-Observe workflow
        
        Args:
            query: The user's query or task
            max_iterations: Maximum number of iterations to prevent infinite loops
            
        Returns:
            Final answer to the query
        """
        # Store the query in memory
        self.memory_manager.add_to_short_term({
            "type": "query",
            "content": query,
            "timestamp": datetime.now().isoformat()
        })
        
        # Initialize the workflow
        iteration = 0
        final_answer = None
        
        while iteration < max_iterations:
            print(f"Iteration {iteration + 1}/{max_iterations}")
            
            # Think
            print("Thinking...")
            plan = self.think(query)
            
            # Act
            print("Acting...")
            action_result = self.act(plan, query)
            
            # Observe
            print("Observing...")
            observation = self.observe(action_result, plan, query)
            
            # Check if we have a final answer
            if not observation["continue"]:
                final_answer = observation["observation"]
                break
            
            # Update the query with the observation for the next iteration
            query = f"""
Original task: {query}

Progress so far:
{observation["observation"]}

Please continue solving this task.
"""
            
            iteration += 1
        
        # If we reached max iterations without a final answer
        if final_answer is None:
            final_answer = f"""
I've spent {max_iterations} iterations trying to solve this task.
Here's my best answer based on what I've learned:

{observation["observation"]}

Note: This answer may be incomplete as I reached the maximum number of iterations.
"""
        
        return final_answer


# Example usage
if __name__ == "__main__":
    # Initialize the agent
    agent = GAIAAgent(use_local_model=False)
    
    # Example GAIA-style query
    query = "What is the capital of France and what is its population? Also, calculate 15% of this population."
    
    # Solve the query
    answer = agent.solve(query)
    
    print("\nFinal Answer:")
    print(answer)