File size: 15,278 Bytes
162ee47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
"""
Enhanced GAIA-Ready AI Agent with integrated memory and reasoning systems
This is the main integration file that combines the agent, memory system,
and reasoning system into a complete solution for the Hugging Face Agents Course.
"""
import os
import sys
import json
import traceback
from typing import List, Dict, Any, Optional, Union
from datetime import datetime
# Import the memory and reasoning systems
try:
from memory_system import EnhancedMemoryManager
from reasoning_system import ReasoningSystem
except ImportError:
print("Error: Could not import memory_system or reasoning_system modules.")
print("Make sure memory_system.py and reasoning_system.py are in the same directory.")
sys.exit(1)
# Import smolagents
try:
from smolagents import Agent, InferenceClientModel, Tool, LiteLLMModel
except ImportError:
import subprocess
subprocess.check_call(["pip", "install", "smolagents"])
from smolagents import Agent, InferenceClientModel, Tool
try:
from smolagents import LiteLLMModel
except ImportError:
print("Warning: LiteLLMModel not available, will use InferenceClientModel only.")
# Import tool implementations
from agent import (
web_search_function,
web_page_content_function,
calculator_function,
python_executor_function,
image_analyzer_function,
text_processor_function,
file_manager_function
)
class EnhancedGAIAAgent:
"""
Enhanced AI Agent designed to perform well on the GAIA benchmark
Integrates memory and reasoning systems with the Think-Act-Observe workflow
"""
def __init__(self, api_key=None, use_local_model=False, use_semantic_memory=True):
"""
Initialize the enhanced GAIA agent
Args:
api_key: API key for Hugging Face Inference API
use_local_model: Whether to use a local model via Ollama
use_semantic_memory: Whether to use semantic search for memory retrieval
"""
# Initialize the memory system
self.memory_manager = EnhancedMemoryManager(use_semantic_search=use_semantic_memory)
# Initialize the LLM model
if use_local_model:
# Use Ollama for local model
try:
self.model = LiteLLMModel(
model_id="ollama_chat/qwen2:7b",
api_base="http://127.0.0.1:11434",
num_ctx=8192,
)
print("Using local Ollama model: qwen2:7b")
except Exception as e:
print(f"Error initializing local model: {str(e)}")
print("Falling back to Hugging Face Inference API")
self.model = InferenceClientModel(
model_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
api_key=api_key or os.environ.get("HF_API_KEY", "")
)
print("Using Hugging Face Inference API model: Mixtral-8x7B")
else:
# Use Hugging Face Inference API
self.model = InferenceClientModel(
model_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
api_key=api_key or os.environ.get("HF_API_KEY", "")
)
print("Using Hugging Face Inference API model: Mixtral-8x7B")
# Define tools
self.tools = [
Tool(
name="web_search",
description="Search the web for information",
function=web_search_function
),
Tool(
name="web_page_content",
description="Fetch and extract content from a web page",
function=web_page_content_function
),
Tool(
name="calculator",
description="Perform mathematical calculations",
function=calculator_function
),
Tool(
name="image_analyzer",
description="Analyze image content",
function=image_analyzer_function
),
Tool(
name="python_executor",
description="Execute Python code",
function=python_executor_function
),
Tool(
name="text_processor",
description="Process and analyze text",
function=text_processor_function
),
Tool(
name="file_manager",
description="Save and load data from files",
function=file_manager_function
)
]
# Enhanced system prompt for GAIA benchmark
self.system_prompt = """
You are an advanced AI assistant designed to solve complex tasks from the GAIA benchmark.
You have access to various tools that can help you solve these tasks.
Always follow the Think-Act-Observe workflow:
1. Think: Carefully analyze the task and plan your approach
- Break down complex tasks into smaller steps
- Consider what information you need and how to get it
- Plan your approach before taking action
2. Act: Use appropriate tools to gather information or perform actions
- web_search: Search the web for information
- web_page_content: Extract content from specific web pages
- calculator: Perform mathematical calculations
- image_analyzer: Analyze image content
- python_executor: Run Python code for complex operations
- text_processor: Process and analyze text (summarize, analyze_sentiment, extract_keywords)
- file_manager: Save and load data from files (save, load)
3. Observe: Analyze the results of your actions and adjust your approach
- Verify if the information answers the original question
- Identify any gaps or inconsistencies
- Determine if additional actions are needed
For complex tasks:
- Break them down into smaller, manageable steps
- Keep track of your progress and intermediate results
- Verify each step before moving to the next
- Always double-check your final answer
When reasoning:
- Be thorough and methodical
- Consider multiple perspectives
- Explain your thought process clearly
- Cite sources when providing factual information
Remember that the GAIA benchmark tests your ability to:
- Reason effectively about complex problems
- Understand and process multimodal information
- Navigate the web to find information
- Use tools appropriately to solve tasks
Always verify your answers before submitting them.
"""
# Initialize the base agent
self.base_agent = Agent(
model=self.model,
tools=self.tools,
system_prompt=self.system_prompt
)
# Initialize the reasoning system
self.reasoning_system = ReasoningSystem(self.base_agent, self.memory_manager)
# Error handling and recovery settings
self.max_retries = 3
self.error_log = []
def solve(self, query: str, max_iterations: int = 5, verbose: bool = True) -> Dict[str, Any]:
"""
Solve a task using the enhanced Think-Act-Observe workflow
Args:
query: The user's query or task
max_iterations: Maximum number of iterations
verbose: Whether to print detailed progress
Returns:
Dictionary containing the final answer and metadata
"""
start_time = datetime.now()
if verbose:
print(f"\n{'='*50}")
print(f"Starting to solve: {query}")
print(f"{'='*50}\n")
try:
# Execute the reasoning cycle
final_answer = self.reasoning_system.execute_reasoning_cycle(query, max_iterations)
# Record execution time
execution_time = (datetime.now() - start_time).total_seconds()
if verbose:
print(f"\n{'='*50}")
print(f"Task completed in {execution_time:.2f} seconds")
print(f"{'='*50}\n")
# Get memory summary for debugging
memory_summary = self.memory_manager.get_memory_summary()
return {
"query": query,
"answer": final_answer,
"execution_time": execution_time,
"iterations": max_iterations,
"memory_summary": memory_summary,
"success": True,
"error": None
}
except Exception as e:
error_msg = f"Error solving task: {str(e)}\n{traceback.format_exc()}"
print(error_msg)
# Record the error
self.error_log.append({
"timestamp": datetime.now().isoformat(),
"query": query,
"error": str(e),
"traceback": traceback.format_exc()
})
# Try to recover and provide a partial answer
try:
recovery_prompt = f"""
I encountered an error while trying to solve this task: {query}
The error was: {str(e)}
Based on what I know so far, please provide the best possible answer or explanation.
If you can't provide a complete answer, explain what you do know and what information is missing.
"""
recovery_answer = self.base_agent.chat(recovery_prompt)
execution_time = (datetime.now() - start_time).total_seconds()
if verbose:
print(f"\n{'='*50}")
print(f"Task completed with recovery in {execution_time:.2f} seconds")
print(f"{'='*50}\n")
return {
"query": query,
"answer": recovery_answer,
"execution_time": execution_time,
"iterations": 0,
"success": False,
"error": str(e),
"recovery": True
}
except Exception as recovery_error:
# If recovery fails, return a basic error message
return {
"query": query,
"answer": f"I'm sorry, I encountered an error while solving this task and couldn't recover: {str(e)}",
"execution_time": (datetime.now() - start_time).total_seconds(),
"iterations": 0,
"success": False,
"error": str(e),
"recovery_error": str(recovery_error),
"recovery": False
}
def batch_solve(self, queries: List[str], max_iterations: int = 5, verbose: bool = True) -> List[Dict[str, Any]]:
"""
Solve multiple tasks in batch
Args:
queries: List of user queries or tasks
max_iterations: Maximum number of iterations per query
verbose: Whether to print detailed progress
Returns:
List of results for each query
"""
results = []
for i, query in enumerate(queries):
if verbose:
print(f"\n{'='*50}")
print(f"Processing task {i+1}/{len(queries)}: {query}")
print(f"{'='*50}\n")
result = self.solve(query, max_iterations, verbose)
results.append(result)
# Clear working memory between tasks
self.memory_manager.clear_working_memory()
return results
def save_results(self, results: Union[Dict[str, Any], List[Dict[str, Any]]], filename: str = "gaia_results.json") -> None:
"""
Save results to a file
Args:
results: Results from solve() or batch_solve()
filename: Name of the file to save results to
"""
try:
with open(filename, 'w') as f:
json.dump(results, f, indent=2)
print(f"Results saved to {filename}")
except Exception as e:
print(f"Error saving results: {str(e)}")
def load_results(self, filename: str = "gaia_results.json") -> Union[Dict[str, Any], List[Dict[str, Any]]]:
"""
Load results from a file
Args:
filename: Name of the file to load results from
Returns:
Loaded results
"""
try:
with open(filename, 'r') as f:
results = json.load(f)
print(f"Results loaded from {filename}")
return results
except Exception as e:
print(f"Error loading results: {str(e)}")
return []
def evaluate_performance(self, results: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Evaluate performance metrics from batch results
Args:
results: Results from batch_solve()
Returns:
Dictionary of performance metrics
"""
if not results:
return {"error": "No results to evaluate"}
total_queries = len(results)
successful_queries = sum(1 for r in results if r.get("success", False))
recovery_queries = sum(1 for r in results if not r.get("success", False) and r.get("recovery", False))
failed_queries = total_queries - successful_queries - recovery_queries
avg_execution_time = sum(r.get("execution_time", 0) for r in results) / total_queries
return {
"total_queries": total_queries,
"successful_queries": successful_queries,
"recovery_queries": recovery_queries,
"failed_queries": failed_queries,
"success_rate": successful_queries / total_queries if total_queries > 0 else 0,
"recovery_rate": recovery_queries / total_queries if total_queries > 0 else 0,
"failure_rate": failed_queries / total_queries if total_queries > 0 else 0,
"avg_execution_time": avg_execution_time
}
# Example usage
if __name__ == "__main__":
# Initialize the agent
agent = EnhancedGAIAAgent(use_local_model=False, use_semantic_memory=True)
# Example GAIA-style queries
sample_queries = [
"What is the capital of France and what is its population? Also, calculate 15% of this population.",
"Who was the first person to walk on the moon? What year did this happen?",
"Explain the concept of photosynthesis in simple terms."
]
# Solve a single query
print("\nSolving single query...")
result = agent.solve(sample_queries[0])
print("\nFinal Answer:")
print(result["answer"])
# Uncomment to solve batch queries
# print("\nSolving batch queries...")
# batch_results = agent.batch_solve(sample_queries)
#
# # Save results
# agent.save_results(batch_results)
#
# # Evaluate performance
# performance = agent.evaluate_performance(batch_results)
# print("\nPerformance Metrics:")
# for key, value in performance.items():
# print(f"{key}: {value}")
|