File size: 24,019 Bytes
162ee47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
"""
Reasoning System for GAIA-Ready AI Agent

This module provides advanced reasoning capabilities for the AI agent,
implementing the ReAct approach (Reasoning + Acting) and supporting
the Think-Act-Observe workflow.
"""

import os
import json
from typing import List, Dict, Any, Optional, Union, Tuple
from datetime import datetime
import traceback
import re

try:
    from smolagents import Agent, InferenceClientModel, Tool
except ImportError:
    import subprocess
    subprocess.check_call(["pip", "install", "smolagents"])
    from smolagents import Agent, InferenceClientModel, Tool


class ReasoningSystem:
    """
    Advanced reasoning system implementing the ReAct approach
    and supporting the Think-Act-Observe workflow.
    """
    def __init__(self, agent, memory_manager):
        self.agent = agent
        self.memory_manager = memory_manager
        self.max_reasoning_depth = 5
        self.reasoning_templates = self._load_reasoning_templates()
    
    def _load_reasoning_templates(self) -> Dict[str, str]:
        """Load reasoning templates for different stages of the workflow"""
        return {
            "think": """
# Task Analysis and Planning

## Task
{query}

## Relevant Context
{context}

## Analysis
Let me analyze this task step by step:
1. What is being asked?
2. What information do I need?
3. What challenges might I encounter?

## Plan
Based on my analysis, here's my plan:
1. [First step]
2. [Second step]
3. [Third step]
...

## Tools Needed
To accomplish this task, I'll need:
- [Tool 1]: For [purpose]
- [Tool 2]: For [purpose]
...

## Expected Outcome
If successful, I expect to:
[Description of expected outcome]
""",
            "act": """
# Action Execution

## Current Task
{query}

## Current Plan
{plan}

## Previous Results
{previous_results}

## Next Action
Based on my plan and previous results, I'll now:
1. Use the [tool name] tool
2. With parameters: [parameters]
3. Purpose: [why this action is needed]

## Execution
[Detailed description of how I'll execute this action]
""",
            "observe": """
# Result Analysis

## Current Task
{query}

## Action Taken
{action}

## Results Obtained
{results}

## Analysis
Let me analyze these results:
1. What did I learn?
2. Does this answer the original question?
3. Are there any inconsistencies or gaps?

## Next Steps
Based on my analysis:
- [Next step recommendation]
- [Alternative approach if needed]

## Progress Assessment
Task completion status: [percentage]%
[Explanation of current progress]
"""
        }
    
    def think(self, query: str) -> Dict[str, Any]:
        """
        Analyze the task and plan an approach (Think phase)
        
        Args:
            query: The user's query or task
            
        Returns:
            Dictionary containing analysis and plan
        """
        # Retrieve relevant memories
        relevant_memories = self.memory_manager.get_relevant_memories(query)
        
        # Format context from relevant memories
        context = ""
        if relevant_memories:
            context_items = []
            for memory in relevant_memories:
                memory_type = memory.get("type", "general")
                content = memory.get("content", "")
                relevance = memory.get("relevance_score", 0)
                context_items.append(f"- [{memory_type.upper()}] (Relevance: {relevance:.2f}): {content}")
            context = "\n".join(context_items)
        else:
            context = "No relevant prior knowledge found."
        
        # Apply the thinking template
        thinking_template = self.reasoning_templates["think"]
        thinking_prompt = thinking_template.format(
            query=query,
            context=context
        )
        
        # Use the agent to generate a plan
        try:
            response = self.agent.chat(thinking_prompt)
            
            # Store the thinking in memory
            self.memory_manager.add_to_short_term({
                "type": "thinking",
                "content": response,
                "timestamp": datetime.now().isoformat()
            })
            
            # Parse the response to extract structured information
            analysis = self._extract_section(response, "Analysis")
            plan = self._extract_section(response, "Plan")
            tools_needed = self._extract_section(response, "Tools Needed")
            expected_outcome = self._extract_section(response, "Expected Outcome")
            
            return {
                "raw_response": response,
                "analysis": analysis,
                "plan": plan,
                "tools_needed": tools_needed,
                "expected_outcome": expected_outcome
            }
        except Exception as e:
            error_msg = f"Error during thinking phase: {str(e)}\n{traceback.format_exc()}"
            print(error_msg)
            
            # Store the error in memory
            self.memory_manager.add_to_short_term({
                "type": "error",
                "content": error_msg,
                "timestamp": datetime.now().isoformat()
            })
            
            # Return a basic plan despite the error
            return {
                "raw_response": "Error occurred during thinking phase.",
                "analysis": "Could not analyze the task due to an error.",
                "plan": "1. Try a simpler approach\n2. Break down the task into smaller steps",
                "tools_needed": "web_search: To find basic information",
                "expected_outcome": "Partial answer to the query"
            }
    
    def act(self, plan: Dict[str, Any], query: str, previous_results: str = "") -> Dict[str, Any]:
        """
        Execute actions based on the plan (Act phase)
        
        Args:
            plan: The plan generated by the think step
            query: The original query
            previous_results: Results from previous actions
            
        Returns:
            Dictionary containing action details and results
        """
        # Apply the action template
        action_template = self.reasoning_templates["act"]
        action_prompt = action_template.format(
            query=query,
            plan=plan.get("plan", "No plan available."),
            previous_results=previous_results if previous_results else "No previous results."
        )
        
        try:
            # Use the agent to determine the next action
            action_response = self.agent.chat(action_prompt)
            
            # Store the action planning in memory
            self.memory_manager.add_to_short_term({
                "type": "action_planning",
                "content": action_response,
                "timestamp": datetime.now().isoformat()
            })
            
            # Parse the action response to extract tool and parameters
            tool_info = self._extract_tool_info(action_response)
            
            if not tool_info:
                # If no tool was identified, try a more direct approach
                direct_prompt = f"""
Based on the task "{query}" and the plan:
{plan.get('plan', 'No plan available.')}

Which specific tool should I use next and with what parameters?
Respond in this format:
TOOL: [tool name]
PARAMETERS: [parameter1=value1, parameter2=value2, ...]
"""
                direct_response = self.agent.chat(direct_prompt)
                tool_info = self._extract_tool_info(direct_response)
            
            if tool_info:
                tool_name = tool_info["tool"]
                tool_params = tool_info["parameters"]
                
                # Find the matching tool
                matching_tool = None
                for tool in self.agent.tools:
                    if tool.name == tool_name:
                        matching_tool = tool
                        break
                
                if matching_tool:
                    # Execute the tool
                    try:
                        if isinstance(tool_params, dict):
                            result = matching_tool.function(**tool_params)
                        else:
                            result = matching_tool.function(tool_params)
                        
                        # Store the successful action result in memory
                        self.memory_manager.add_to_short_term({
                            "type": "action_result",
                            "content": f"Tool: {tool_name}\nParameters: {tool_params}\nResult: {result}",
                            "timestamp": datetime.now().isoformat()
                        })
                        
                        return {
                            "tool": tool_name,
                            "parameters": tool_params,
                            "result": result,
                            "success": True,
                            "error": None
                        }
                    except Exception as e:
                        error_msg = f"Error executing tool {tool_name}: {str(e)}\n{traceback.format_exc()}"
                        print(error_msg)
                        
                        # Store the error in memory
                        self.memory_manager.add_to_short_term({
                            "type": "error",
                            "content": error_msg,
                            "timestamp": datetime.now().isoformat()
                        })
                        
                        return {
                            "tool": tool_name,
                            "parameters": tool_params,
                            "result": f"Error: {str(e)}",
                            "success": False,
                            "error": str(e)
                        }
                else:
                    error_msg = f"Tool '{tool_name}' not found."
                    print(error_msg)
                    
                    # Store the error in memory
                    self.memory_manager.add_to_short_term({
                        "type": "error",
                        "content": error_msg,
                        "timestamp": datetime.now().isoformat()
                    })
                    
                    return {
                        "tool": tool_name,
                        "parameters": tool_params,
                        "result": f"Error: Tool '{tool_name}' not found.",
                        "success": False,
                        "error": "Tool not found"
                    }
            else:
                error_msg = "Could not determine which tool to use."
                print(error_msg)
                
                # Store the error in memory
                self.memory_manager.add_to_short_term({
                    "type": "error",
                    "content": error_msg,
                    "timestamp": datetime.now().isoformat()
                })
                
                # Default to web search as a fallback
                try:
                    web_search_tool = None
                    for tool in self.agent.tools:
                        if tool.name == "web_search":
                            web_search_tool = tool
                            break
                    
                    if web_search_tool:
                        result = web_search_tool.function(query)
                        return {
                            "tool": "web_search",
                            "parameters": query,
                            "result": result,
                            "success": True,
                            "error": None,
                            "fallback": True
                        }
                    else:
                        return {
                            "tool": "none",
                            "parameters": "none",
                            "result": "Could not determine which tool to use and web_search fallback not available.",
                            "success": False,
                            "error": "No tool selected"
                        }
                except Exception as e:
                    return {
                        "tool": "web_search",
                        "parameters": query,
                        "result": f"Error in fallback web search: {str(e)}",
                        "success": False,
                        "error": str(e),
                        "fallback": True
                    }
        except Exception as e:
            error_msg = f"Error during action phase: {str(e)}\n{traceback.format_exc()}"
            print(error_msg)
            
            # Store the error in memory
            self.memory_manager.add_to_short_term({
                "type": "error",
                "content": error_msg,
                "timestamp": datetime.now().isoformat()
            })
            
            return {
                "tool": "none",
                "parameters": "none",
                "result": f"Error during action planning: {str(e)}",
                "success": False,
                "error": str(e)
            }
    
    def observe(self, action_result: Dict[str, Any], plan: Dict[str, Any], query: str) -> Dict[str, Any]:
        """
        Analyze the results of actions and determine next steps (Observe phase)
        
        Args:
            action_result: Results from the act step
            plan: The original plan
            query: The original query
            
        Returns:
            Dictionary containing observation and next steps
        """
        # Apply the observation template
        observation_template = self.reasoning_templates["observe"]
        observation_prompt = observation_template.format(
            query=query,
            action=f"Tool: {action_result.get('tool', 'none')}\nParameters: {action_result.get('parameters', 'none')}",
            results=action_result.get('result', 'No results.')
        )
        
        try:
            # Use the agent to analyze the results
            observation_response = self.agent.chat(observation_prompt)
            
            # Store the observation in memory
            self.memory_manager.add_to_short_term({
                "type": "observation",
                "content": observation_response,
                "timestamp": datetime.now().isoformat()
            })
            
            # Parse the observation to extract structured information
            analysis = self._extract_section(observation_response, "Analysis")
            next_steps = self._extract_section(observation_response, "Next Steps")
            progress = self._extract_section(observation_response, "Progress Assessment")
            
            # Determine if we need to continue with more actions
            continue_execution = True
            
            # Check for completion indicators
            completion_phrases = [
                "task complete", "question answered", "fully answered",
                "100%", "task is complete", "fully resolved"
            ]
            
            if any(phrase in observation_response.lower() for phrase in completion_phrases):
                continue_execution = False
                
                # Store the final answer in long-term memory
                self.memory_manager.add_to_long_term({
                    "type": "final_answer",
                    "query": query,
                    "content": observation_response,
                    "timestamp": datetime.now().isoformat(),
                    "importance": 0.8  # High importance for final answers
                })
            
            return {
                "raw_response": observation_response,
                "analysis": analysis,
                "next_steps": next_steps,
                "progress": progress,
                "continue": continue_execution
            }
        except Exception as e:
            error_msg = f"Error during observation phase: {str(e)}\n{traceback.format_exc()}"
            print(error_msg)
            
            # Store the error in memory
            self.memory_manager.add_to_short_term({
                "type": "error",
                "content": error_msg,
                "timestamp": datetime.now().isoformat()
            })
            
            # Default observation with continuation
            return {
                "raw_response": f"Error occurred during observation phase: {str(e)}",
                "analysis": "Could not analyze the results due to an error.",
                "next_steps": "Try a different approach or tool.",
                "progress": "Unknown due to error.",
                "continue": True  # Continue by default on error
            }
    
    def _extract_section(self, text: str, section_name: str) -> str:
        """Extract a section from the response text"""
        pattern = rf"(?:^|\n)(?:#+\s*{re.escape(section_name)}:?|\*\*{re.escape(section_name)}:?\*\*|{re.escape(section_name)}:?)\s*(.*?)(?:\n(?:#+\s*|$)|\Z)"
        match = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
        
        if match:
            content = match.group(1).strip()
            return content
        
        # Try a more lenient approach if the first one fails
        pattern = rf"{re.escape(section_name)}:?\s*(.*?)(?:\n\n|\n[A-Z]|\Z)"
        match = re.search(pattern, text, re.DOTALL | re.IGNORECASE)
        
        if match:
            content = match.group(1).strip()
            return content
        
        return f"No {section_name.lower()} found."
    
    def _extract_tool_info(self, text: str) -> Optional[Dict[str, Any]]:
        """Extract tool name and parameters from the response text"""
        # Try to find tool name
        tool_pattern = r"(?:TOOL|Tool|tool):\s*(\w+)"
        tool_match = re.search(tool_pattern, text)
        
        if not tool_match:
            return None
        
        tool_name = tool_match.group(1).strip()
        
        # Try to find parameters
        params_pattern = r"(?:PARAMETERS|Parameters|parameters):\s*(.*?)(?:\n\n|\n[A-Z]|\Z)"
        params_match = re.search(params_pattern, text, re.DOTALL)
        
        if params_match:
            params_text = params_match.group(1).strip()
            
            # Check if parameters are in key=value format
            if "=" in params_text:
                # Parse as dictionary
                params_dict = {}
                param_pairs = re.findall(r"(\w+)\s*=\s*([^,\n]+)", params_text)
                
                for key, value in param_pairs:
                    params_dict[key.strip()] = value.strip()
                
                return {
                    "tool": tool_name,
                    "parameters": params_dict
                }
            else:
                # Treat as a single string parameter
                return {
                    "tool": tool_name,
                    "parameters": params_text
                }
        else:
            # No parameters found, use empty dict
            return {
                "tool": tool_name,
                "parameters": {}
            }
    
    def execute_reasoning_cycle(self, query: str, max_iterations: int = 5) -> str:
        """
        Execute a complete Think-Act-Observe reasoning cycle
        
        Args:
            query: The user's query or task
            max_iterations: Maximum number of iterations
            
        Returns:
            Final answer to the query
        """
        # Store the query in memory
        self.memory_manager.add_to_short_term({
            "type": "query",
            "content": query,
            "timestamp": datetime.now().isoformat()
        })
        
        # Initialize the workflow
        iteration = 0
        final_answer = None
        all_results = []
        
        while iteration < max_iterations:
            print(f"Iteration {iteration + 1}/{max_iterations}")
            
            # Think
            print("Thinking...")
            plan = self.think(query)
            
            # Act
            print("Acting...")
            previous_results = "\n".join([r.get("result", "") for r in all_results])
            action_result = self.act(plan, query, previous_results)
            all_results.append(action_result)
            
            # Observe
            print("Observing...")
            observation = self.observe(action_result, plan, query)
            
            # Check if we have a final answer
            if not observation["continue"]:
                # Generate final answer
                final_answer_prompt = f"""
TASK: {query}

REASONING PROCESS:
{plan.get('raw_response', 'No thinking process available.')}

ACTIONS TAKEN:
{', '.join([f"{r.get('tool', 'unknown')}({r.get('parameters', '')})" for r in all_results])}

RESULTS:
{previous_results}
{action_result.get('result', '')}

OBSERVATION:
{observation.get('raw_response', 'No observation available.')}

Based on all the above, provide a comprehensive final answer to the original task.
"""
                final_answer = self.agent.chat(final_answer_prompt)
                
                # Store the final answer in long-term memory
                self.memory_manager.add_to_long_term({
                    "type": "final_answer",
                    "query": query,
                    "content": final_answer,
                    "timestamp": datetime.now().isoformat(),
                    "importance": 0.9  # Very high importance
                })
                
                break
            
            # Update the query with the observation for the next iteration
            query = f"""
Original task: {query}

Progress so far:
{observation.get('raw_response', 'No observation available.')}

Please continue solving this task.
"""
            
            iteration += 1
        
        # If we reached max iterations without a final answer
        if final_answer is None:
            final_answer = f"""
I've spent {max_iterations} iterations trying to solve this task.
Here's my best answer based on what I've learned:

{observation.get('raw_response', 'No final observation available.')}

Note: This answer may be incomplete as I reached the maximum number of iterations.
"""
            
            # Store the partial answer in long-term memory
            self.memory_manager.add_to_long_term({
                "type": "partial_answer",
                "query": query,
                "content": final_answer,
                "timestamp": datetime.now().isoformat(),
                "importance": 0.6  # Medium importance for partial answers
            })
        
        return final_answer


# Example usage
if __name__ == "__main__":
    # This would be imported from your agent.py
    from smolagents import Agent, InferenceClientModel, Tool
    
    # Mock agent for testing
    class MockAgent:
        def __init__(self):
            self.tools = [
                Tool(name="web_search", description="Search the web", function=lambda x: f"Search results for: {x}"),
                Tool(name="calculator", description="Calculate", function=lambda x: f"Result: {eval(x)}")
            ]
        
        def chat(self, message):
            return f"Response to: {message[:50]}..."
    
    # Mock memory manager
    class MockMemoryManager:
        def add_to_short_term(self, item):
            print(f"Added to short-term: {item['type']}")
        
        def add_to_long_term(self, item):
            print(f"Added to long-term: {item['type']}")
        
        def get_relevant_memories(self, query):
            return []
    
    # Test the reasoning system
    agent = MockAgent()
    memory_manager = MockMemoryManager()
    reasoning = ReasoningSystem(agent, memory_manager)
    
    result = reasoning.execute_reasoning_cycle("What is 2+2?")
    print(f"\nFinal result: {result}")