Spaces:
Sleeping
Sleeping
import os | |
import cv2 | |
import numpy as np | |
from pathlib import Path | |
import urllib.request | |
# YOLOv4-tiny (fast, decent accuracy, ~23MB weights) | |
YOLO_CFG_URL = "https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov4-tiny.cfg" | |
YOLO_WEIGHTS_URL = "https://github.com/AlexeyAB/darknet/releases/download/darknet_yolo_v4_pre/yolov4-tiny.weights" | |
YOLO_NAMES_URL = "https://raw.githubusercontent.com/pjreddie/darknet/master/data/coco.names" | |
MODEL_DIR = Path(os.getenv("MODEL_DIR", "models")) | |
CFG_PATH = MODEL_DIR / "yolov4-tiny.cfg" | |
WEIGHTS_PATH = MODEL_DIR / "yolov4-tiny.weights" | |
NAMES_PATH = MODEL_DIR / "coco.names" | |
def _ensure_models(): | |
MODEL_DIR.mkdir(parents=True, exist_ok=True) | |
if not CFG_PATH.exists(): | |
urllib.request.urlretrieve(YOLO_CFG_URL, CFG_PATH) | |
if not WEIGHTS_PATH.exists(): | |
urllib.request.urlretrieve(YOLO_WEIGHTS_URL, WEIGHTS_PATH) | |
if not NAMES_PATH.exists(): | |
urllib.request.urlretrieve(YOLO_NAMES_URL, NAMES_PATH) | |
with open(NAMES_PATH, "r") as f: | |
classes = [line.strip() for line in f.readlines()] | |
return classes | |
_net = None | |
_output_layers = None | |
_classes = None | |
def _load_net(): | |
global _net, _output_layers, _classes | |
if _net is not None: | |
return _net, _output_layers, _classes | |
_classes = _ensure_models() | |
_net = cv2.dnn.readNetFromDarknet(str(CFG_PATH), str(WEIGHTS_PATH)) | |
_net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV) | |
_net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) | |
layer_names = _net.getLayerNames() | |
_output_layers = [layer_names[i - 1] for i in _net.getUnconnectedOutLayers().flatten()] | |
return _net, _output_layers, _classes | |
def detect_people_yolo(frame_bgr, conf_thresh=0.55, nms_thresh=0.45, draw=True): | |
""" | |
Returns: | |
people_indices: list of indices of 'person' boxes after NMS | |
boxes: list[(x,y,w,h)] | |
confidences: list[float] | |
annotated: frame with boxes (BGR) | |
""" | |
net, out_layers, classes = _load_net() | |
h, w = frame_bgr.shape[:2] | |
blob = cv2.dnn.blobFromImage(frame_bgr, scalefactor=1/255.0, size=(416, 416), | |
swapRB=True, crop=False) | |
net.setInput(blob) | |
layer_outputs = net.forward(out_layers) | |
boxes = [] | |
confidences = [] | |
class_ids = [] | |
for output in layer_outputs: | |
for detection in output: | |
scores = detection[5:] | |
class_id = int(np.argmax(scores)) | |
confidence = float(scores[class_id]) | |
if confidence < conf_thresh: | |
continue | |
center_x = int(detection[0] * w) | |
center_y = int(detection[1] * h) | |
bw = int(detection[2] * w) | |
bh = int(detection[3] * h) | |
x = int(center_x - bw / 2) | |
y = int(center_y - bh / 2) | |
boxes.append([x, y, bw, bh]) | |
confidences.append(confidence) | |
class_ids.append(class_id) | |
idxs = cv2.dnn.NMSBoxes(boxes, confidences, conf_thresh, nms_thresh) | |
people_indices = [] | |
annotated = frame_bgr.copy() | |
if len(idxs) > 0: | |
for i in idxs.flatten(): | |
if class_ids[i] < len(classes) and classes[class_ids[i]] == "person": | |
people_indices.append(i) | |
if draw: | |
x, y, bw, bh = boxes[i] | |
cv2.rectangle(annotated, (x, y), (x + bw, y + bh), (0, 255, 0), 2) | |
label = f"person {confidences[i]:.2f}" | |
cv2.putText(annotated, label, (x, y - 6), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2) | |
# Big on-screen counter for debugging | |
if draw: | |
cv2.putText(annotated, f"People: {len(people_indices)}", (12, 36), | |
cv2.FONT_HERSHEY_SIMPLEX, 1.1, (0, 0, 0), 4) | |
cv2.putText(annotated, f"People: {len(people_indices)}", (12, 36), | |
cv2.FONT_HERSHEY_SIMPLEX, 1.1, (255, 255, 255), 2) | |
return people_indices, boxes, confidences, annotated | |