import os from pathlib import Path from typing import List, Dict, Union import cv2 import numpy as np from deepface import DeepFace # Avoid RetinaFace/tf-keras mismatch: use OpenCV face detector backend DETECTOR = os.getenv("FACE_DETECTOR", "opencv") MODEL_NAME = os.getenv("FACE_MODEL", "VGG-Face") # or "Facenet512", "ArcFace", ... DIST_THRESHOLD = float(os.getenv("FACE_DIST_THRESHOLD", "0.35")) # lower => stricter def _list_images(folder: Path) -> list[Path]: exts = {".jpg", ".jpeg", ".png", ".bmp"} return [p for p in folder.glob("*") if p.suffix.lower() in exts] def _ensure_faces_dir(dir_path: str) -> Path: p = Path(dir_path) if not p.exists() or not any(p.iterdir()): # Return as-is; caller will print friendly message return p return p def _embed(img_bgr: np.ndarray): # DeepFace.represent expects RGB rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB) reps = DeepFace.represent( rgb, model_name=MODEL_NAME, detector_backend=DETECTOR, enforce_detection=False ) # represent returns list of dicts. If none detected, empty list. if not reps: return None # take first face (for counting/verification, that’s fine) return np.array(reps[0]["embedding"], dtype=np.float32) def _cosine(a, b): a = a / (np.linalg.norm(a) + 1e-9) b = b / (np.linalg.norm(b) + 1e-9) return float(np.dot(a, b)) def recognize_faces(frame_bgr: np.ndarray, faces_dir: str, topk: int = 3) -> Union[str, List[Dict]]: """ Returns: - str message if faces dir missing/empty or no faces detected. - List[{"name": str, "score": float}] otherwise (score = 1 - cosine distance). """ gallery_root = _ensure_faces_dir(faces_dir) if not gallery_root.exists(): return f"Warning: faces folder '{faces_dir}' not found." gallery_imgs = _list_images(gallery_root) if not gallery_imgs: return f"Warning: faces folder '{faces_dir}' is empty." # embed incoming frame (first face) probe = _embed(frame_bgr) if probe is None: return "No face in frame" # compare to gallery scores = [] for p in gallery_imgs: img = cv2.imread(str(p)) if img is None: continue emb = _embed(img) if emb is None: continue cos = _cosine(probe, emb) # convert to distance-like: higher is better (similarity) scores.append({"name": p.stem, "score": cos}) scores.sort(key=lambda x: x["score"], reverse=True) # Filter with threshold if provided (using cosine similarity ~ 1.0 is perfect) filtered = [s for s in scores if (1.0 - s["score"]) <= DIST_THRESHOLD] return filtered[:topk]