Spaces:
Running
Running
File size: 8,804 Bytes
5af5718 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import io
import os
from functools import cache, lru_cache
from pathlib import Path
from typing import Any
import random
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
import numpy as np
# Dummy initialization - no actual model loading
DEVICE_CPU = "cpu"
DTYPE = "dummy_dtype"
FG_API_KEY = os.getenv("FG_API_KEY", "dummy_api_key")
# Dummy model and prompt objects
class DummyModel:
def __init__(self):
pass
def to(self, device, dtype):
return self
class DummyPrompt:
def to(self, device, dtype):
return self
model = DummyModel()
prompt = DummyPrompt()
@cache
def _ctx():
# Dummy context
class DummyContext:
def reset(self):
pass
def run_one_sync(self, func, *args):
# Return a dummy cutout image
img = Image.new('RGBA', (200, 200), (255, 0, 0, 128))
return img
return DummyContext()
def on_change(scene: dict[str, Any] | None, reference: Image.Image | None) -> tuple[dict[str, Any], str]:
bbox_str = ""
if scene is not None and isinstance(scene.get("boxes"), list) and len(scene.get("boxes", [])) == 1:
assert scene is not None
box = scene["boxes"][0]
bbox_str = f"({box['xmin']}, {box['ymin']}, {box['xmax']}, {box['ymax']})"
return (gr.update(interactive=reference is not None and bbox_str != ""), bbox_str)
def create_dummy_image(width: int = 512, height: int = 512, color: tuple = (100, 150, 200), text: str = "Dummy Output") -> Image.Image:
"""Create a dummy image with some text"""
img = Image.new('RGB', (width, height), color)
draw = ImageDraw.Draw(img)
# Try to use a font, fallback to default if not available
try:
font = ImageFont.truetype("arial.ttf", 24)
except:
font = ImageFont.load_default()
# Get text bounding box for centering
bbox = draw.textbbox((0, 0), text, font=font)
text_width = bbox[2] - bbox[0]
text_height = bbox[3] - bbox[1]
x = (width - text_width) // 2
y = (height - text_height) // 2
draw.text((x, y), text, fill=(255, 255, 255), font=font)
return img
def _process(
scene: dict[str, Any],
reference: Image.Image,
seed: int = 1234,
) -> tuple[tuple[Image.Image, Image.Image], Image.Image, Image.Image]:
"""Dummy processing function that returns placeholder images"""
# Get scene image or create dummy
if isinstance(scene.get("image"), Image.Image):
scene_image = scene["image"]
else:
scene_image = create_dummy_image(512, 512, (150, 100, 200), "Dummy Scene")
# Create dummy output image
output = create_dummy_image(
scene_image.width,
scene_image.height,
(random.randint(50, 200), random.randint(50, 200), random.randint(50, 200)),
f"Processed (seed: {seed})"
)
# Create dummy reference output
reference_output = reference.copy() if reference else create_dummy_image(200, 200, (255, 100, 100), "Ref")
# Create dummy scene output
scene_output = scene_image.copy()
before_after = (scene_image.resize(output.size), output)
return (before_after, reference_output, scene_output)
@lru_cache(maxsize=32)
def _cutout_reference(image_bytes: bytes) -> Image.Image:
"""Dummy cutout function"""
# Create a simple dummy cutout image
return create_dummy_image(200, 200, (255, 0, 0, 128), "Cutout")
def cutout_reference(reference: Image.Image) -> Image.Image:
"""Dummy cutout wrapper"""
if reference:
# Create a simple mask effect by making it semi-transparent
buf = io.BytesIO()
reference.save(buf, format="PNG")
return _cutout_reference(buf.getvalue())
else:
return create_dummy_image(200, 200, (255, 0, 0), "No Reference")
def process(
scene: dict[str, Any],
reference: Image.Image,
seed: int = 1234,
cut_out_reference: bool = False,
) -> tuple[tuple[Image.Image, Image.Image], Image.Image, Image.Image]:
"""Main dummy processing function"""
if cut_out_reference and reference:
reference = cutout_reference(reference)
return _process(scene, reference, seed)
TITLE = """
<h1>Finegrain Product Placement LoRA</h1>
<p>
🧪 An experiment to extend Flux Kontext with product placement capabilities.
The LoRA was trained using EditNet, our before / after image editing dataset.
</p>
<p>
Just draw a box to set where the subject should be blended, and at what size.
</p>
<p>
<a href="https://huggingface.co/finegrain/finegrain-product-placement-lora">Model Card</a> |
<a href="https://blog.finegrain.ai/posts/product-placement-flux-lora-experiment/">Blog Post</a> |
<a href="https://finegrain.ai/editnet">EditNet</a>
</p>
"""
with gr.Blocks() as demo:
gr.HTML(TITLE)
with gr.Row():
with gr.Column():
scene = gr.Image(
label="Scene",
type="pil",
image_mode="RGB",
)
reference = gr.Image(
label="Product Reference",
visible=True,
interactive=True,
type="pil",
image_mode="RGBA",
)
with gr.Accordion("Options", open=False):
seed = gr.Slider(
minimum=0,
maximum=10_000,
value=1234,
step=1,
label="Seed",
)
cut_out_reference = gr.Checkbox(
label="Cut out reference",
value=bool(FG_API_KEY),
interactive=bool(FG_API_KEY),
)
with gr.Row():
run_btn = gr.Button(value="Blend", interactive=True)
with gr.Column():
output_image = gr.Image(label="Output Image")
with gr.Accordion("Debug", open=False):
output_textbox = gr.Textbox(label="Bounding Box", interactive=False)
output_reference = gr.Image(
label="Reference",
visible=True,
interactive=False,
type="pil",
image_mode="RGB",
)
output_scene = gr.Image(
label="Scene",
visible=True,
interactive=False,
type="pil",
image_mode="RGB",
)
# Dummy change function for scene and reference
def dummy_on_change(scene, reference):
return gr.update(interactive=scene is not None and reference is not None), "Dummy bbox (100, 100, 200, 200)"
# Watch for changes (scene and reference)
scene.change(fn=dummy_on_change, inputs=[scene, reference], outputs=[run_btn, output_textbox])
reference.change(fn=dummy_on_change, inputs=[scene, reference], outputs=[run_btn, output_textbox])
def dummy_process_wrapper(scene, reference, seed, cut_out_reference):
"""Wrapper for the dummy process function"""
if not scene or not reference:
# Return dummy images if inputs are missing
dummy_img = create_dummy_image(512, 512, (100, 100, 100), "No Input")
return dummy_img, dummy_img, dummy_img
# Convert scene to the expected format
scene_dict = {"image": scene, "boxes": [{"xmin": 100, "ymin": 100, "xmax": 200, "ymax": 200}]}
result = process(scene_dict, reference, seed, cut_out_reference)
# Unpack the results
before_after, ref_out, scene_out = result
output_combined = before_after[1] # Get the "after" image
return output_combined, ref_out, scene_out
run_btn.click(
fn=dummy_process_wrapper,
inputs=[scene, reference, seed, cut_out_reference],
outputs=[output_image, output_reference, output_scene],
)
# Create dummy examples with placeholder images
def create_dummy_examples():
examples = []
colors = [(255, 100, 100), (100, 255, 100), (100, 100, 255), (255, 255, 100), (255, 100, 255)]
names = ["Sunglasses", "Kitchen", "Glass", "Chair", "Lantern"]
for i, (color, name) in enumerate(zip(colors, names)):
scene_img = create_dummy_image(400, 400, color, f"Scene {name}")
ref_img = create_dummy_image(200, 200, tuple(c//2 for c in color), f"Ref {name}")
examples.append([scene_img, ref_img])
return examples
ex = gr.Examples(
examples=create_dummy_examples(),
inputs=[scene, reference],
outputs=[output_image, output_reference, output_scene],
fn=dummy_process_wrapper,
)
if __name__ == "__main__":
demo.launch(debug=True) |