import gradio as gr
import json
from datetime import datetime
from datasets import Dataset
from huggingface_hub import login, HfApi
import pandas as pd
import os
import time
import tempfile
import logging
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Authenticate with Hugging Face
HF_TOKEN = os.environ.get("HF_TOKEN")
if HF_TOKEN:
login(token=HF_TOKEN)
logger.info("✅ Authenticated with Hugging Face")
else:
logger.warning("⚠️ HF_TOKEN not found - running without authentication")
# Replace with your actual dataset name for Winter 2025
DATASET_NAME = "ysharma/gradio-hackathon-registrations-winter-2025"
COUNTER = """
Hackathon Countdown
Countdown to the Global Event Has Begun. Registrations are now open!
"""
def safe_add_to_dataset(registration_data, max_retries=5, retry_delay=3):
"""
Safely add new registration data with bulletproof error handling
NEVER creates new datasets - only adds to existing ones
"""
try:
logger.info("Starting new registration process")
# Create new row with updated fields
new_row = {
"timestamp": registration_data["timestamp"],
"full_name": registration_data["personal_info"]["full_name"],
"email": registration_data["personal_info"]["email"],
"hf_username": registration_data["personal_info"]["hf_username"],
"gradio_usage": registration_data["personal_info"]["gradio_usage"],
"track_interest": str(registration_data["participation"]["track_interest"]),
"previous_participation": registration_data["participation"]["previous_participation"],
"experience_level": registration_data["participation"]["experience_level"],
"how_heard": registration_data["participation"]["how_heard"],
"project_description": registration_data["additional"]["project_description"] or "",
}
logger.info("Created new row data")
# Multi-attempt loading with different strategies
existing_df = None
load_successful = False
for attempt in range(max_retries):
logger.info(f"Loading attempt {attempt + 1}/{max_retries}")
try:
# Strategy 1: Direct parquet file access (most reliable)
api = HfApi()
files = api.list_repo_files(DATASET_NAME, repo_type="dataset")
parquet_files = [f for f in files if f.endswith('.parquet') and 'train' in f]
if parquet_files:
logger.info(f"Found parquet file: {parquet_files[0]}")
# Download to temporary location
with tempfile.TemporaryDirectory() as temp_dir:
parquet_file = api.hf_hub_download(
repo_id=DATASET_NAME,
filename=parquet_files[0],
repo_type="dataset",
cache_dir=temp_dir,
force_download=True
)
existing_df = pd.read_parquet(parquet_file)
logger.info(f"Successfully loaded {len(existing_df)} existing rows")
load_successful = True
break
else:
logger.warning("No parquet files found")
except Exception as load_error:
logger.warning(f"Attempt {attempt + 1} failed: {str(load_error)[:100]}")
if attempt < max_retries - 1:
logger.info(f"Waiting {retry_delay} seconds before retry...")
time.sleep(retry_delay)
continue
# CRITICAL SAFETY CHECK: Never proceed without existing data
if not load_successful or existing_df is None:
error_msg = "🚨 CRITICAL SAFETY ERROR: Could not load existing dataset after multiple attempts."
logger.error(error_msg)
logger.error("🚨 REFUSING to proceed to prevent data loss!")
logger.error("🚨 Please check dataset manually or contact administrators.")
return False, (
"❌ Registration temporarily unavailable due to technical issues. "
"Please try again in a few minutes. If the problem persists, contact support."
)
# Check for duplicates
duplicate_check = existing_df[
(existing_df['email'].str.lower() == new_row['email'].lower()) |
(existing_df['hf_username'].str.lower() == new_row['hf_username'].lower())
]
if len(duplicate_check) > 0:
logger.warning("Duplicate registration attempt detected")
return False, "❌ Error: This email or Hugging Face username is already registered."
# Add new row safely
combined_df = pd.concat([existing_df, pd.DataFrame([new_row])], ignore_index=True)
logger.info(f"Combined data now has {len(combined_df)} rows (was {len(existing_df)})")
# Create timestamped backup before upload
backup_timestamp = int(time.time())
try:
# Convert to Dataset and upload
logger.info("Converting to HuggingFace Dataset format...")
updated_dataset = Dataset.from_pandas(combined_df)
# Create backup first
backup_name = f"{DATASET_NAME}-auto-backup-{backup_timestamp}"
logger.info(f"Creating backup: {backup_name}")
updated_dataset.push_to_hub(backup_name, private=True)
logger.info("Pushing to main dataset...")
updated_dataset.push_to_hub(DATASET_NAME, private=True)
logger.info("✅ Successfully saved new registration")
logger.info(f"Total rows in dataset: {len(combined_df)}")
# Quick verification
time.sleep(2)
try:
verify_files = api.list_repo_files(DATASET_NAME, repo_type="dataset")
logger.info("✅ Upload verification: Files updated successfully")
except:
logger.warning("⚠️ Could not verify upload (this may be normal)")
return True, "Registration successful!"
except Exception as upload_error:
error_msg = str(upload_error).lower()
if any(indicator in error_msg for indicator in ['rate limit', '429', 'too many requests']):
logger.warning("🚨 Rate limit hit - registration system temporarily busy")
return False, "⏳ Registration temporarily unavailable due to high server load. Please try again in 10-15 minutes."
else:
logger.error(f"Upload failed: {upload_error}")
return False, f"❌ Registration failed during upload: {str(upload_error)}"
except Exception as e:
logger.error(f"❌ Unexpected error in registration: {e}")
import traceback
traceback.print_exc()
return False, f"❌ Registration failed: {str(e)}"
def submit_registration(full_name, email, hf_username, gradio_usage,
track_interest, previous_participation, experience_level, how_heard,
acknowledgment, project_description):
"""Process the registration form submission with enhanced validation"""
# Enhanced validation
if not full_name or not full_name.strip():
return "❌ Error: Please enter your full name"
if not email or not email.strip():
return "❌ Error: Please enter your email address"
if not hf_username or not hf_username.strip():
return "❌ Error: Please enter your Hugging Face username"
if not gradio_usage:
return "❌ Error: Please select how you're currently using Gradio"
if not track_interest:
return "❌ Error: Please select at least one track of interest"
if not previous_participation:
return "❌ Error: Please select your hackathon experience"
if not experience_level:
return "❌ Error: Please select your experience level"
if not how_heard:
return "❌ Error: Please select how you heard about this hackathon"
if not acknowledgment:
return "❌ Error: Please confirm your acknowledgment to participate"
# Email format validation
import re
email_pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
if not re.match(email_pattern, email.strip()):
return "❌ Error: Please enter a valid email address"
# Process the registration data
registration_data = {
"timestamp": datetime.now().isoformat(),
"personal_info": {
"full_name": full_name.strip(),
"email": email.strip().lower(),
"hf_username": hf_username.strip(),
"gradio_usage": gradio_usage,
},
"participation": {
"track_interest": track_interest,
"previous_participation": previous_participation,
"experience_level": experience_level,
"how_heard": how_heard,
},
"additional": {
"project_description": project_description.strip() if project_description else None,
}
}
# Save to Hugging Face dataset with bulletproof error handling
success, message = safe_add_to_dataset(registration_data)
if not success:
return f"❌ Registration failed: {message}"
return f"""✅ Registration Successful!
Thank you, {full_name}! Your registration has been received and saved.
📧 You will receive information about API credits as we finalize sponsor partnerships.
🔑 API and Compute credits will be distributed before or during the Hackathon starting date.
💬 Be sure to **join the Huggingface organization** for regular updates on the hackathon and **to submit your entries**. Join our Discord community channel `agents-mcp-hackathon-winter25🏆` for updates and support during the event: https://discord.gg/YgswRqxQ
**See you at the hackathon! 🚀**"""
# Health check function
def check_dataset_health():
"""Check if the dataset is accessible and healthy"""
try:
api = HfApi()
files = api.list_repo_files(DATASET_NAME, repo_type="dataset")
parquet_files = [f for f in files if f.endswith('.parquet')]
if parquet_files:
logger.info(f"✅ Dataset health check passed - found {len(parquet_files)} parquet files")
return True
else:
logger.warning("⚠️ Dataset health check: No parquet files found")
return False
except Exception as e:
logger.error(f"❌ Dataset health check failed: {e}")
return False
# Initialize with health check
logger.info("🚀 Starting Gradio Hackathon Registration System - Winter 2025")
logger.info(f"📊 Dataset: {DATASET_NAME}")
if check_dataset_health():
logger.info("✅ System ready - dataset is healthy")
else:
logger.warning("⚠️ System starting with dataset health warnings")
# Custom CSS for gradient theme
custom_css = """
.gradio-container {
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, sans-serif;
}
.header-gradient {
background: linear-gradient(135deg, #0a0a0a 0%, #FF7A00 35%, #4A90E2 70%, #ffffff 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
}
/* Gradient Submit Button Styling */
#gradient-submit-btn {
background: linear-gradient(135deg, #0a0a0a 0%, #FF7A00 35%, #4A90E2 70%, #ffffff 100%) !important;
border: none !important;
color: white !important;
font-weight: 600 !important;
font-size: 18px !important;
padding: 16px 32px !important;
border-radius: 12px !important;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.15) !important;
transition: all 0.3s ease !important;
text-transform: none !important;
}
#gradient-submit-btn:hover {
transform: translateY(-2px) !important;
box-shadow: 0 6px 20px rgba(0, 0, 0, 0.25) !important;
}
#gradient-submit-btn:active {
transform: translateY(0px) !important;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.2) !important;
}
/* Disabled state for the button */
#gradient-submit-btn:disabled {
opacity: 0.6 !important;
cursor: not-allowed !important;
transform: none !important;
}
"""
# Create the Gradio interface
with gr.Blocks(title="Gradio Agents & MCP Hackathon - Winter 2025", css=custom_css, theme="ocean") as demo:
# Header
gr.Markdown("""
# 🤖 Gradio Agents & MCP Hackathon - Winter 2025 Registration 🚀
**Join our [Discord Community](https://discord.gg/YgswRqxQ) channel `agents-mcp-hackathon-winter25🏆` for active support during the hackathon.**
**📅 Event Dates:** November 14-30, 2025 (17 days, 3 weekends) | **🏆 Prizes: $15,000+ USD in cash prizes** | **💻 Location:** Online & Global
**🎁 FREE API & Compute Credits** (Details announced soon):
- API credits from major AI providers
- Access to latest and strongest LLMs
- Compute resources for building your projects
**The definitive Agents & MCP event is back!** OpenAI, Microsoft, Google DeepMind, and numerous startups have already adopted MCP. Join the community that launched the MCP developer movement. Participate and stand a chance to learn the latest AI technologies and also Win BIG!
""")
gr.HTML(COUNTER)
gr.Markdown("---")
with gr.Row():
with gr.Column():
# Personal Information Section
gr.Markdown("## 1. Personal Information")
full_name = gr.Textbox(
label="Full Name *",
placeholder="Your full name as you'd like it on certificates",
max_lines=1
)
email = gr.Textbox(
label="Email Address *",
placeholder="Primary contact email (we'll send important updates here)",
max_lines=1
)
hf_username = gr.Textbox(
label="Hugging Face Username *",
placeholder="Required for organization access and submissions",
max_lines=1
)
# NEW: Gradio Usage Question
gradio_usage = gr.Radio(
label="How are you currently using Gradio? *",
choices=[
"Professional work - My company uses Gradio",
"Personal projects - Building side projects",
"Academic/Research - University or research work",
"Learning - New to Gradio, want to learn",
"Not using yet - Interested to start"
],
info="Helps us understand our community better"
)
with gr.Column():
# Hackathon Participation Section
gr.Markdown("## 2. Hackathon Participation")
track_interest = gr.CheckboxGroup(
label="Which track interests you most? *",
choices=[
"Track 1: MCP Tools & Servers",
"Track 2: Agentic Applications",
]
)
# NEW: Previous participation
previous_participation = gr.Radio(
label="Hackathon experience *",
choices=[
"I participated in June 2025 Agents & MCP Hackathon",
"I've done other AI hackathons before",
"This is my first AI hackathon"
]
)
# NEW: Experience level
experience_level = gr.Radio(
label="Your experience with AI/Agents development *",
choices=[
"Beginner - New to AI development",
"Intermediate - Some AI projects",
"Advanced - Regular AI developer",
"Expert - Professional AI engineer"
]
)
# NEW: How they heard about it
how_heard = gr.Dropdown(
label="How did you hear about this hackathon? *",
choices=[
"Hugging Face email/newsletter",
"Twitter/X",
"LinkedIn",
"Discord",
"From a colleague/friend",
"YouTube",
"Reddit",
"Sponsor announcement",
"I participated in June 2025",
"Other"
]
)
with gr.Row():
with gr.Column():
# Additional Information Section
gr.Markdown("## 3. Additional Information")
project_description = gr.Textbox(
label="What type of project are you most excited to build?",
placeholder="Brief description of your project idea or what interests you most",
lines=3
)
with gr.Column():
# Acknowledgment Section
gr.Markdown("## 4. Acknowledgment")
acknowledgment = gr.Checkbox(
label="Acknowledgment *",
info="""I commit to actively participate and submit a project by November 30, 2025. I understand that API/compute credits are provided to support hackathon participation and should be used for building my hackathon project. I commit to using these credits responsibly during the event period.""",
)
# Submit button
submit_btn = gr.Button("🚀 Register for Hackathon", variant="primary", size="lg", elem_id="gradient-submit-btn")
# Output
output = gr.Markdown()
# Enhanced submit function
def handle_registration_with_state(*args):
try:
result = submit_registration(*args)
return result, gr.Button("🚀 Register for Hackathon", interactive=True, variant="primary")
except Exception as e:
logger.error(f"Registration handling error: {e}")
return f"❌ An unexpected error occurred: {str(e)}", gr.Button("🚀 Register for Hackathon", interactive=True, variant="primary")
# Click event with updated inputs
submit_btn.click(
fn=lambda *args: (gr.Button("⏳ Processing Registration...", interactive=False, variant="secondary"), ""),
inputs=[
full_name, email, hf_username, gradio_usage,
track_interest, previous_participation, experience_level, how_heard,
acknowledgment, project_description,
],
outputs=[submit_btn, output],
queue=False
).then(
fn=handle_registration_with_state,
inputs=[
full_name, email, hf_username, gradio_usage,
track_interest, previous_participation, experience_level, how_heard,
acknowledgment, project_description,
],
outputs=[output, submit_btn],
queue=True
)
# Footer
gr.Markdown("""
**Questions?** Join Huggingface [Discord](https://discord.gg/DVzRsYXy) or email: gradio-team@huggingface.co
""")
if __name__ == "__main__":
demo.launch(allowed_paths=["."])