File size: 12,129 Bytes
a29afae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa156dd
 
 
 
 
 
 
 
 
 
 
 
a29afae
 
edd2416
a29afae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edd2416
a29afae
 
 
edd2416
a29afae
 
 
 
 
edd2416
a29afae
 
 
 
 
 
 
 
 
 
 
 
edd2416
a29afae
 
 
 
 
 
 
 
 
 
 
 
 
aa156dd
a29afae
 
 
 
 
 
 
 
aa156dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a29afae
9a169ab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import gradio as gr
from gradio_image_annotation import image_annotator
import fal_client
from PIL import Image
import io
import base64
import numpy as np
import os

def process_images(annotated_image, second_image, user_api_key=None, progress=gr.Progress()):
    """
    Process the annotated image and second image using fal API
    """
    # Check if annotated_image is provided
    if annotated_image is None:
        return None, "Please provide the first image and draw an annotation box"
    
    # Check if second_image is provided (could be None or numpy array)
    if second_image is None or (isinstance(second_image, np.ndarray) and second_image.size == 0):
        return None, "Please provide the second image"
    
    # Check if annotation box exists
    if not annotated_image.get("boxes") or len(annotated_image["boxes"]) == 0:
        return None, "Please draw an annotation box on the first image"
    
    # Extract bounding box coordinates
    box = annotated_image["boxes"][0]  # Get the first (and only) box
    xmin = box.get("xmin")
    ymin = box.get("ymin")
    xmax = box.get("xmax")
    ymax = box.get("ymax")
    
    # Construct the dynamic prompt with the actual box coordinates
    prompt = f"""add the <central object in the second image> in the first image only inside an imaginary box defined by pixels values "xmin": {xmin}, "ymin": {ymin}, "xmax": {xmax}, "ymax": {ymax}. Take care of shadows, lighting, style, and general concept of objects as per the first image."""
    
    progress(0.2, desc="Gradio is preparing your images...")
    
    try:
        # Set API key - prioritize user input, then environment variable
        original_key = os.environ.get("FAL_KEY", "")
        
        if user_api_key and user_api_key.strip():
            # Use user-provided key
            os.environ["FAL_KEY"] = user_api_key.strip()
            api_key_source = "user-provided"
        elif original_key:
            # Use environment variable (secret)
            api_key_source = "environment"
        else:
            # No API key available
            return None, "⚠️ No FAL API key found. Please either:\n1. Duplicate this app and set your FAL_KEY as a secret, or\n2. Enter your FAL API key in the field provided above."
        
        # Convert first image to file for upload
        first_img = annotated_image["image"]
        if isinstance(first_img, np.ndarray):
            # Convert numpy array to PIL Image
            first_img_pil = Image.fromarray(first_img.astype('uint8'))
            # Save to bytes
            img1_bytes = io.BytesIO()
            first_img_pil.save(img1_bytes, format='PNG')
            img1_bytes.seek(0)
            uploaded_file1 = fal_client.upload(img1_bytes.getvalue(), "image/png")
        elif isinstance(first_img, str):
            # If it's a file path
            uploaded_file1 = fal_client.upload_file(first_img)
        else:
            # If it's already a PIL Image
            img1_bytes = io.BytesIO()
            first_img.save(img1_bytes, format='PNG')
            img1_bytes.seek(0)
            uploaded_file1 = fal_client.upload(img1_bytes.getvalue(), "image/png")
        
        # Convert second image to file for upload
        if isinstance(second_image, np.ndarray):
            second_img_pil = Image.fromarray(second_image.astype('uint8'))
            img2_bytes = io.BytesIO()
            second_img_pil.save(img2_bytes, format='PNG')
            img2_bytes.seek(0)
            uploaded_file2 = fal_client.upload(img2_bytes.getvalue(), "image/png")
        elif isinstance(second_image, str):
            uploaded_file2 = fal_client.upload_file(second_image)
        else:
            img2_bytes = io.BytesIO()
            second_image.save(img2_bytes, format='PNG')
            img2_bytes.seek(0)
            uploaded_file2 = fal_client.upload(img2_bytes.getvalue(), "image/png")
        
        progress(0.4, desc="Processing with nano-banana...")
        
        # Setup progress callback
        def on_queue_update(update):
            if isinstance(update, fal_client.InProgress):
                # InProgress updates don't have a progress attribute, just show we're processing
                progress(0.6, desc="nano-banana is working on your image...")
                # Optionally log any messages if they exist
                if hasattr(update, 'logs') and update.logs:
                    for log in update.logs:
                        print(log.get("message", ""))
        
        # Call fal API with the dynamic prompt including box coordinates
        result = fal_client.subscribe(
            "fal-ai/nano-banana/edit",
            arguments={
                "prompt": prompt,
                "image_urls": [f"{uploaded_file1}", f"{uploaded_file2}"]
            },
            with_logs=True,
            on_queue_update=on_queue_update,
        )
        
        progress(0.95, desc="Finalizing...")
        
        # Extract the result image URL
        if result and "images" in result and len(result["images"]) > 0:
            output_url = result["images"][0]["url"]
            description = result.get("description", "Image processed successfully!")
            progress(1.0, desc="Complete!")
            return output_url, description
        else:
            return None, "Failed to generate image. Please check your API key or try again."
            
    except Exception as e:
        error_message = str(e).lower()
        
        # Check for authentication errors
        if "401" in error_message or "unauthorized" in error_message or "api key" in error_message:
            return None, f"⚠️ API Authentication Error: Invalid or missing FAL API key.\n\nPlease either:\n1. Duplicate this app and set your FAL_KEY as a secret, or\n2. Enter your valid FAL API key in the field provided above.\n\nGet your API key at: https://fal.ai"
        
        # Check for rate limit errors
        elif "429" in error_message or "rate limit" in error_message:
            return None, "⚠️ Rate limit exceeded. Please wait a moment and try again, or use your own API key for higher limits."
        
        # Check for server errors
        elif "500" in error_message or "502" in error_message or "503" in error_message:
            return None, f"⚠️ FAL API server error. The service might be temporarily unavailable.\n\nPlease either:\n1. Try again in a few moments, or\n2. Use your own API key by entering it in the field above.\n\nError details: {str(e)}"
        
        # Generic error with fallback message
        else:
            return None, f"⚠️ Error occurred: {str(e)}\n\nIf the error persists, please either:\n1. Duplicate this app and set your FAL_KEY as a secret, or\n2. Enter your FAL API key in the field provided above.\n\nGet your API key at: https://fal.ai"
    
    finally:
        # Restore original API key if we temporarily changed it
        if user_api_key and user_api_key.strip():
            if original_key:
                os.environ["FAL_KEY"] = original_key
            else:
                os.environ.pop("FAL_KEY", None)


# Create the Gradio interface
with gr.Blocks(theme='ocean') as demo:
    # Add navigation bar
    navbar = gr.Navbar(
        value=[
            ("Documentation", "https://docs.fal.ai"),
            ("FAL.AI nano-banana", "https://fal.ai/models/fal-ai/nano-banana/edit/api"),
            ("Learn more about Gradio Navbar", "https://www.gradio.app/guides/multipage-apps#customizing-the-navbar")
        ],
        visible=True,
        main_page_name="🎨 guided nano banana"
    )
    
    gr.HTML(
        """
        <h1><center>Guide Your Nano Banana👉🍌</center></h1>
        
        <b>How to use:</b><br>
        1. Upload or capture the first image and draw a box where you want to place an object<br>
        2. Upload the second image containing the object you want to insert<br>
        3. Click "Generate Composite Image" and wait for the Gradio and Nano-Banana to blend the images<br>
        
        The Gradio app will intelligently place the object from the second image into the boxed area of the first image,
        taking care of lighting, shadows, and proper integration.
        """
    )
    
    # API Key input section
    with gr.Row():
        with gr.Column():
            with gr.Accordion("🔑 API Configuration (Optional)", open=False):
                gr.Markdown(
                    """
                    **Note:** If you're experiencing API errors or want to use your own FAL account:
                    - Enter your FAL API key below, or
                    - [Duplicate this Space](https://huggingface.co/spaces) and set FAL_KEY as a secret
                    - Get your API key at [fal.ai](https://fal.ai)
                    """
                )
                api_key_input = gr.Textbox(
                    label="FAL API Key",
                    placeholder="Enter your FAL key (optional)",
                    type="password",
                    interactive=True,
                    info="Your key will be used only for this session and won't be stored"
                )
    
    with gr.Row():
        with gr.Column(scale=1):
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("### Step 1: Annotate First Image")
                    # Image annotator for first image
                    from gradio_image_annotation import image_annotator
                    #first_image = ImageAnnotator(
                    first_image = image_annotator(
                        value=None,
                        label="Draw a box where you want to place the object",
                        image_type="pil",
                        single_box=True,  # Only allow one box
                        disable_edit_boxes=True,  
                        show_download_button=False,
                        show_share_button=False,
                        box_thickness=3,
                        box_selected_thickness=4,
                        show_label=True,
                        #image_mode="RGB",
                        #box_min_size=20,
                    )
                    
                with gr.Column(scale=1):
                    gr.Markdown("### Step 2: Upload Second Image")
                    # Regular image input for second image
                    second_image = gr.Image(
                        label="Image containing the object to insert",
                        type="numpy",
                        height=400,
                    )
                    # Generate button
                    generate_btn = gr.Button("Step 3: 🚀 Generate Composite Image", variant="primary", size="lg")
    
    # Output section
    with gr.Column():
        output_image = gr.Image(
            label="Generated Composite Image",
            type="filepath",
            height=500,
        )
        status_text = gr.Textbox(
            label="Status",
            placeholder="Results will appear here...",
            lines=3,
        )
        
    # Connect the button to the processing function
    generate_btn.click(
        fn=process_images,
        inputs=[first_image, second_image, api_key_input],
        outputs=[output_image, status_text],
        show_progress=True,
    )

with demo.route("Tips", "/tips"):
    gr.Markdown(
        """
        # ℹ️ Tips for Best Results
        - **Box Placement**: Draw the box exactly where you want the object to appear
        - **Image Quality**: Use high-resolution images for better results
        - **Object Selection**: The second image should clearly show the object you want to insert
        - **Lighting**: Images with similar lighting conditions work best
        - **Processing Time**: Generation typically takes 10-30 seconds
        - **API Key**: If you encounter errors, try using your own FAL API key
        """
    )

    # Different navbar for the Settings page
    navbar = gr.Navbar(
        visible=True,
        main_page_name="Home",
    )  
    
if __name__ == "__main__":
    demo.launch(ssr_mode=False)