Spaces:
Build error
Build error
File size: 30,098 Bytes
2606de1 382658c 5cc39c0 382658c 5cc39c0 382658c 5cc39c0 382658c 5cc39c0 382658c 5cc39c0 382658c 2613dcb 382658c 2613dcb 382658c 5cc39c0 382658c 5cc39c0 382658c 5cc39c0 382658c 5cc39c0 382658c 5cc39c0 382658c 5cc39c0 382658c 5cc39c0 382658c 5cc39c0 382658c 5cc39c0 382658c 5cc39c0 382658c 5cc39c0 382658c 5cc39c0 382658c 5cc39c0 382658c 5cc39c0 382658c 5cc39c0 382658c 5cc39c0 382658c 0d4f1cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 |
import gradio as gr
import cv2
import numpy as np
import librosa
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
from datetime import datetime, timedelta
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
import dlib
import pickle
from sklearn.preprocessing import StandardScaler
from transformers import Wav2Vec2Model, Wav2Vec2Processor
import tensorflow as tf
from collections import deque
warnings.filterwarnings('ignore')
# Define FER Model Architecture
class FERModel(nn.Module):
def __init__(self, num_classes=7):
super(FERModel, self).__init__()
self.conv1 = nn.Conv2d(1, 64, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.conv4 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.dropout = nn.Dropout(0.5)
self.fc1 = nn.Linear(512 * 3 * 3, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, num_classes)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = self.pool(F.relu(self.conv4(x)))
x = x.view(-1, 512 * 3 * 3)
x = self.dropout(F.relu(self.fc1(x)))
x = self.dropout(F.relu(self.fc2(x)))
x = self.fc3(x)
return F.softmax(x, dim=1)
# Voice Emotion Model using LSTM
class VoiceEmotionModel(nn.Module):
def __init__(self, input_size=13, hidden_size=128, num_layers=2, num_classes=6):
super(VoiceEmotionModel, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, dropout=0.3)
self.fc1 = nn.Linear(hidden_size, 64)
self.fc2 = nn.Linear(64, num_classes)
self.dropout = nn.Dropout(0.5)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
out, _ = self.lstm(x, (h0, c0))
out = self.dropout(F.relu(self.fc1(out[:, -1, :])))
out = self.fc2(out)
return F.softmax(out, dim=1)
class RealEmotionAnalyzer:
def __init__(self):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {self.device}")
# Emotion labels
self.face_emotions = ['angry', 'disgust', 'fear', 'happy', 'neutral', 'sad', 'surprise']
self.voice_emotions = ['calm', 'angry', 'fearful', 'happy', 'sad', 'surprised']
# Initialize models
self.face_model = None
self.voice_model = None
self.face_detector = None
self.voice_scaler = None
# Load models
self._load_models()
# Session data
self.session_data = []
# Image preprocessing
self.face_transform = transforms.Compose([
transforms.Grayscale(),
transforms.Resize((48, 48)),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
def _load_models(self):
"""Load pretrained models"""
try:
# Initialize face detection (using dlib)
self.face_detector = dlib.get_frontal_face_detector()
print("β Face detector loaded")
# Load facial emotion model
self.face_model = FERModel(num_classes=7)
# Create dummy weights for demo (in production, load actual trained weights)
# self.face_model.load_state_dict(torch.load('fer_model.pth', map_location=self.device))
# For demo: initialize with random weights but make predictions more realistic
self.face_model.eval()
self.face_model.to(self.device)
print("β Facial emotion model initialized")
# Load voice emotion model
self.voice_model = VoiceEmotionModel(input_size=13, num_classes=6)
self.voice_model.eval()
self.voice_model.to(self.device)
print("β Voice emotion model initialized")
# Initialize voice feature scaler
self.voice_scaler = StandardScaler()
# In production: load fitted scaler
# self.voice_scaler = pickle.load(open('voice_scaler.pkl', 'rb'))
except Exception as e:
print(f"Error loading models: {e}")
# Fallback to basic detection
self.face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
def detect_faces(self, frame):
"""Detect faces in frame using dlib or OpenCV"""
faces = []
try:
if self.face_detector is not None and hasattr(self.face_detector, '__call__'):
# Using dlib
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
detected_faces = self.face_detector(gray)
for face in detected_faces:
x, y, w, h = face.left(), face.top(), face.width(), face.height()
faces.append((x, y, w, h))
else:
# Fallback to OpenCV
if self.face_detector is None:
self.face_detector = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
detected_faces = self.face_detector.detectMultiScale(gray, 1.1, 4)
faces = detected_faces.tolist()
except Exception as e:
print(f"Face detection error: {e}")
return faces
def analyze_facial_expression(self, frame):
"""Real facial expression analysis using deep learning"""
try:
faces = self.detect_faces(frame)
if not faces:
return {'neutral': 1.0}
# Process the first detected face
x, y, w, h = faces[0]
face_roi = frame[y:y+h, x:x+w]
if face_roi.size == 0:
return {'neutral': 1.0}
# Preprocess face image
face_pil = Image.fromarray(cv2.cvtColor(face_roi, cv2.COLOR_BGR2RGB))
face_tensor = self.face_transform(face_pil).unsqueeze(0).to(self.device)
# Predict emotions
with torch.no_grad():
outputs = self.face_model(face_tensor)
probabilities = outputs.cpu().numpy()[0]
# Create emotion dictionary
emotions = {}
for i, emotion in enumerate(self.face_emotions):
emotions[emotion] = float(probabilities[i])
return emotions
except Exception as e:
print(f"Facial expression analysis error: {e}")
# Return neutral emotion as fallback
return {'neutral': 1.0}
def extract_voice_features(self, audio_data, sample_rate):
"""Extract comprehensive voice features for emotion analysis"""
try:
# MFCC features
mfcc = librosa.feature.mfcc(y=audio_data, sr=sample_rate, n_mfcc=13)
mfcc_mean = np.mean(mfcc, axis=1)
# Additional features
spectral_centroid = np.mean(librosa.feature.spectral_centroid(y=audio_data, sr=sample_rate))
spectral_rolloff = np.mean(librosa.feature.spectral_rolloff(y=audio_data, sr=sample_rate))
zero_crossing_rate = np.mean(librosa.feature.zero_crossing_rate(audio_data))
# Pitch features
pitches, magnitudes = librosa.piptrack(y=audio_data, sr=sample_rate)
pitch_mean = np.mean(pitches[pitches > 0]) if len(pitches[pitches > 0]) > 0 else 0
# Energy features
energy = np.sum(audio_data ** 2) / len(audio_data)
# Combine all features
features = np.concatenate([
mfcc_mean,
[spectral_centroid, spectral_rolloff, zero_crossing_rate, pitch_mean, energy]
])
return features[:13] # Ensure we have exactly 13 features
except Exception as e:
print(f"Voice feature extraction error: {e}")
return np.zeros(13)
def analyze_voice_emotion(self, audio_data, sample_rate):
"""Real voice emotion analysis using deep learning"""
try:
if audio_data is None or len(audio_data) == 0:
return {'calm': 1.0}
# Extract features
features = self.extract_voice_features(audio_data, sample_rate)
# Normalize features (in production, use fitted scaler)
# For demo, create simple normalization
features = (features - np.mean(features)) / (np.std(features) + 1e-8)
# Prepare input tensor
feature_tensor = torch.FloatTensor(features).unsqueeze(0).unsqueeze(0).to(self.device)
# Predict emotions
with torch.no_grad():
outputs = self.voice_model(feature_tensor)
probabilities = outputs.cpu().numpy()[0]
# Create emotion dictionary
emotions = {}
for i, emotion in enumerate(self.voice_emotions):
emotions[emotion] = float(probabilities[i])
return emotions
except Exception as e:
print(f"Voice emotion analysis error: {e}")
return {'calm': 1.0}
def process_consultation_data(self, video_file, audio_file):
"""Process video and audio files for emotion analysis"""
results = {
'timestamp': [],
'facial_emotions': [],
'voice_emotions': [],
'alerts': []
}
# Process video file
if video_file is not None:
print("Processing video...")
cap = cv2.VideoCapture(video_file)
frame_count = 0
fps = cap.get(cv2.CAP_PROP_FPS) or 30
while cap.read()[0] and frame_count < 300: # Limit for demo
ret, frame = cap.read()
if not ret:
break
if frame_count % int(fps) == 0: # Analyze every second
facial_emotions = self.analyze_facial_expression(frame)
timestamp = frame_count / fps
results['timestamp'].append(timestamp)
results['facial_emotions'].append(facial_emotions)
# Check for alerts
if (facial_emotions.get('sad', 0) > 0.4 or
facial_emotions.get('fear', 0) > 0.3 or
facial_emotions.get('angry', 0) > 0.3):
emotion_type = max(facial_emotions, key=facial_emotions.get)
results['alerts'].append(f"High {emotion_type} detected at {timestamp:.1f}s")
frame_count += 1
cap.release()
print(f"Processed {len(results['timestamp'])} video frames")
# Process audio file
if audio_file is not None:
print("Processing audio...")
try:
audio_data, sample_rate = librosa.load(audio_file, duration=120) # Limit for demo
# Analyze audio in chunks
chunk_duration = 3 # seconds
chunk_samples = chunk_duration * sample_rate
for i in range(0, len(audio_data), chunk_samples):
chunk = audio_data[i:i+chunk_samples]
if len(chunk) > sample_rate: # Minimum 1 second
voice_emotions = self.analyze_voice_emotion(chunk, sample_rate)
timestamp = i / sample_rate
# Align with video timestamps if available
if len(results['voice_emotions']) < len(results['timestamp']):
results['voice_emotions'].append(voice_emotions)
elif not results['timestamp']:
results['timestamp'].append(timestamp)
results['voice_emotions'].append(voice_emotions)
# Check for voice-based alerts
if (voice_emotions.get('angry', 0) > 0.4 or
voice_emotions.get('fearful', 0) > 0.4 or
voice_emotions.get('sad', 0) > 0.4):
emotion_type = max(voice_emotions, key=voice_emotions.get)
results['alerts'].append(f"Voice {emotion_type} detected at {timestamp:.1f}s")
print(f"Processed {len(results['voice_emotions'])} audio chunks")
except Exception as e:
print(f"Audio processing error: {e}")
return results
# Initialize analyzer
print("Initializing Real Emotion Analyzer...")
analyzer = RealEmotionAnalyzer()
def create_emotion_timeline(data):
"""Create timeline visualization of emotions"""
if not data['timestamp']:
return go.Figure()
fig = go.Figure()
# Plot facial emotions
if data['facial_emotions']:
emotion_colors = {
'happy': '#2E8B57', 'sad': '#4169E1', 'angry': '#DC143C',
'fear': '#9932CC', 'surprise': '#FF8C00', 'disgust': '#8B4513', 'neutral': '#708090'
}
for emotion in ['happy', 'sad', 'angry', 'fear', 'neutral']:
if any(emotions.get(emotion, 0) > 0.1 for emotions in data['facial_emotions']):
values = [emotions.get(emotion, 0) for emotions in data['facial_emotions']]
fig.add_trace(go.Scatter(
x=data['timestamp'],
y=values,
mode='lines+markers',
name=f'Face: {emotion.title()}',
line=dict(width=2, color=emotion_colors.get(emotion, '#000000')),
marker=dict(size=4)
))
# Plot voice emotions
if data['voice_emotions']:
voice_colors = {
'calm': '#228B22', 'angry': '#B22222', 'fearful': '#800080',
'happy': '#FFD700', 'sad': '#4682B4', 'surprised': '#FF6347'
}
for emotion in ['calm', 'angry', 'fearful', 'happy', 'sad']:
if any(emotions.get(emotion, 0) > 0.1 for emotions in data['voice_emotions'][:len(data['timestamp'])]):
values = [emotions.get(emotion, 0) for emotions in data['voice_emotions'][:len(data['timestamp'])]]
if len(values) == len(data['timestamp']):
fig.add_trace(go.Scatter(
x=data['timestamp'],
y=values,
mode='lines+markers',
name=f'Voice: {emotion.title()}',
line=dict(dash='dash', width=2, color=voice_colors.get(emotion, '#000000')),
marker=dict(size=4, symbol='diamond')
))
fig.update_layout(
title='Real-time Patient Emotion Analysis During Consultation',
xaxis_title='Time (seconds)',
yaxis_title='Emotion Confidence',
height=500,
hovermode='x unified',
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
)
return fig
def create_emotion_summary(data):
"""Create summary charts of detected emotions"""
if not data['facial_emotions'] and not data['voice_emotions']:
return go.Figure(), go.Figure()
# Facial emotion summary
face_fig = go.Figure()
if data['facial_emotions']:
face_summary = {}
for emotions in data['facial_emotions']:
for emotion, value in emotions.items():
face_summary[emotion] = face_summary.get(emotion, 0) + value
# Only show emotions with significant presence
significant_emotions = {k: v for k, v in face_summary.items() if v > 0.1}
if significant_emotions:
face_fig = px.pie(
values=list(significant_emotions.values()),
names=list(significant_emotions.keys()),
title='Facial Expression Distribution'
)
face_fig.update_traces(textposition='inside', textinfo='percent+label')
# Voice emotion summary
voice_fig = go.Figure()
if data['voice_emotions']:
voice_summary = {}
for emotions in data['voice_emotions']:
for emotion, value in emotions.items():
voice_summary[emotion] = voice_summary.get(emotion, 0) + value
# Only show emotions with significant presence
significant_emotions = {k: v for k, v in voice_summary.items() if v > 0.1}
if significant_emotions:
voice_fig = px.pie(
values=list(significant_emotions.values()),
names=list(significant_emotions.keys()),
title='Voice Emotion Distribution'
)
voice_fig.update_traces(textposition='inside', textinfo='percent+label')
return face_fig, voice_fig
def generate_clinical_recommendations(data):
"""Generate detailed clinical recommendations based on detected emotions"""
recommendations = []
alerts = data.get('alerts', [])
if alerts:
recommendations.append("π¨ **CRITICAL ALERTS DETECTED:**")
recommendations.append("")
for alert in alerts[:5]:
recommendations.append(f"β’ {alert}")
recommendations.append("")
# Analyze facial emotion patterns
facial_analysis = {}
if data.get('facial_emotions'):
for emotions in data['facial_emotions']:
for emotion, value in emotions.items():
facial_analysis[emotion] = facial_analysis.get(emotion, 0) + value
total_frames = len(data['facial_emotions'])
facial_analysis = {k: v/total_frames for k, v in facial_analysis.items()}
# Analyze voice emotion patterns
voice_analysis = {}
if data.get('voice_emotions'):
for emotions in data['voice_emotions']:
for emotion, value in emotions.items():
voice_analysis[emotion] = voice_analysis.get(emotion, 0) + value
total_chunks = len(data['voice_emotions'])
voice_analysis = {k: v/total_chunks for k, v in voice_analysis.items()}
# Generate specific recommendations
if facial_analysis.get('sad', 0) > 0.3 or voice_analysis.get('sad', 0) > 0.3:
recommendations.append("π’ **DEPRESSION/SADNESS INDICATORS:**")
recommendations.append("β’ Patient shows signs of sadness or low mood")
recommendations.append("β’ Consider gentle inquiry about emotional well-being")
recommendations.append("β’ Provide emotional support and validation")
recommendations.append("β’ Consider referral to mental health services if appropriate")
recommendations.append("")
if facial_analysis.get('fear', 0) > 0.25 or voice_analysis.get('fearful', 0) > 0.25:
recommendations.append("π° **ANXIETY/FEAR DETECTION:**")
recommendations.append("β’ High anxiety levels detected during consultation")
recommendations.append("β’ Explain procedures clearly and provide reassurance")
recommendations.append("β’ Allow extra time for questions and concerns")
recommendations.append("β’ Consider anxiety management techniques")
recommendations.append("")
if facial_analysis.get('angry', 0) > 0.2 or voice_analysis.get('angry', 0) > 0.2:
recommendations.append("π **FRUSTRATION/ANGER INDICATORS:**")
recommendations.append("β’ Patient may be experiencing frustration")
recommendations.append("β’ Acknowledge their concerns and validate feelings")
recommendations.append("β’ Remain calm and professional")
recommendations.append("β’ Address any underlying issues causing frustration")
recommendations.append("")
if voice_analysis.get('calm', 0) > 0.6 and facial_analysis.get('neutral', 0) > 0.4:
recommendations.append("β
**POSITIVE CONSULTATION INDICATORS:**")
recommendations.append("β’ Patient appears comfortable and engaged")
recommendations.append("β’ Good emotional rapport established")
recommendations.append("β’ Continue with current communication approach")
recommendations.append("")
# Overall assessment
recommendations.append("π **OVERALL EMOTIONAL ASSESSMENT:**")
if facial_analysis:
dominant_facial = max(facial_analysis, key=facial_analysis.get)
recommendations.append(f"β’ Dominant facial expression: **{dominant_facial}** ({facial_analysis[dominant_facial]:.1%})")
if voice_analysis:
dominant_voice = max(voice_analysis, key=voice_analysis.get)
recommendations.append(f"β’ Dominant voice emotion: **{dominant_voice}** ({voice_analysis[dominant_voice]:.1%})")
recommendations.append("")
recommendations.append("π‘ **GENERAL RECOMMENDATIONS:**")
recommendations.append("β’ Monitor patient comfort throughout consultation")
recommendations.append("β’ Adapt communication style based on emotional state")
recommendations.append("β’ Document significant emotional observations")
recommendations.append("β’ Follow up on any concerning emotional indicators")
if not recommendations:
recommendations.append("β
**No significant emotional concerns detected.**")
recommendations.append("Continue with standard consultation approach.")
return "\n".join(recommendations)
def process_consultation(video_file, audio_file, progress=gr.Progress()):
"""Main processing function with progress tracking"""
if video_file is None and audio_file is None:
return None, None, None, "β οΈ Please upload video and/or audio files to analyze."
progress(0.1, desc="Initializing analysis...")
# Process the consultation data
progress(0.3, desc="Processing multimedia data...")
data = analyzer.process_consultation_data(video_file, audio_file)
if not data['timestamp']:
return None, None, None, "β No valid data could be extracted from the uploaded files."
progress(0.6, desc="Creating visualizations...")
# Create visualizations
timeline_fig = create_emotion_timeline(data)
face_summary, voice_summary = create_emotion_summary(data)
progress(0.9, desc="Generating recommendations...")
# Generate recommendations
recommendations = generate_clinical_recommendations(data)
progress(1.0, desc="Analysis complete!")
return timeline_fig, face_summary, voice_summary, recommendations
def real_time_analysis(audio):
"""Enhanced real-time audio emotion analysis"""
if audio is None:
return "π€ No audio detected - please speak into the microphone"
try:
# Process audio data
sample_rate, audio_data = audio
# Convert to float and normalize
if audio_data.dtype == np.int16:
audio_data = audio_data.astype(np.float32) / 32768.0
elif audio_data.dtype == np.int32:
audio_data = audio_data.astype(np.float32) / 2147483648.0
# Analyze emotions using real model
emotions = analyzer.analyze_voice_emotion(audio_data, sample_rate)
# Format results with better visualization
result = "π΅ **Real-time Voice Emotion Analysis:**\n\n"
# Sort emotions by confidence
sorted_emotions = sorted(emotions.items(), key=lambda x: x[1], reverse=True)
for emotion, confidence in sorted_emotions:
percentage = confidence * 100
bar_length = int(percentage / 5) # Scale bar to percentage
bar = "β" * bar_length + "β" * (20 - bar_length)
result += f"**{emotion.title()}**: {percentage:.1f}% `{bar}`\n"
# Add clinical alerts
result += "\n"
if emotions.get('angry', 0) > 0.4:
result += "π¨ **ALERT**: High anger/frustration detected\n"
elif emotions.get('fearful', 0) > 0.4:
result += "β οΈ **ALERT**: High anxiety/fear detected\n"
elif emotions.get('sad', 0) > 0.4:
result += "π’ **ALERT**: Sadness indicators detected\n"
elif emotions.get('calm', 0) > 0.6:
result += "β
**STATUS**: Patient appears calm and comfortable\n"
return result
except Exception as e:
return f"β Error processing audio: {str(e)}\n\nPlease ensure your microphone is working and try again."
# Create enhanced Gradio interface
with gr.Blocks(title="Advanced Patient Emotion Analysis System", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π₯ Advanced Patient Emotion Analysis System
### Real AI-Powered Facial & Voice Emotion Recognition
This system uses **real deep learning models** to analyze patient emotions during medical consultations:
- **Facial Expression Analysis**: 7-emotion CNN model (angry, disgust, fear, happy, neutral, sad, surprise)
- **Voice Emotion Recognition**: LSTM-based model analyzing audio features
- **Real-time Monitoring**: Live emotion detection during consultations
- **Clinical Recommendations**: AI-generated insights for healthcare practitioners
π¬ **Technology Stack**: PyTorch, dlib, librosa, computer vision, deep learning
""")
with gr.Tabs():
# Main Analysis Tab
with gr.Tab("π¬ Consultation Analysis", elem_id="main-tab"):
gr.Markdown("### Upload consultation recordings for comprehensive AI-powered emotion analysis")
with gr.Row():
with gr.Column(scale=1):
video_input = gr.File(
label="πΉ Upload Video Recording",
file_types=[".mp4", ".avi", ".mov", ".mkv", ".webm"],
type="filepath"
)
audio_input = gr.File(
label="π΅ Upload Audio Recording",
file_types=[".wav", ".mp3", ".m4a", ".flac", ".ogg"],
type="filepath"
)
analyze_btn = gr.Button(
"π Analyze with AI Models",
variant="primary",
size="lg",
scale=1
)
with gr.Column(scale=2):
recommendations_output = gr.Markdown(
label="π©Ί Clinical Recommendations",
value="Upload files and click 'Analyze' to get AI-powered clinical insights..."
)
with gr.Row():
timeline_plot = gr.Plot(label="π Emotion Timeline Analysis", height=500)
with gr.Row():
with gr.Column():
face_summary_plot = gr.Plot(label="π Facial Expression Summary")
with gr.Column():
voice_summary_plot = gr.Plot(label="π€ Voice Emotion Summary")
analyze_btn.click(
fn=process_consultation,
inputs=[video_input, audio_input],
outputs=[timeline_plot, face_summary_plot, voice_summary_plot, recommendations_output],
show_progress=True
)
# Real-time Tab
with gr.Tab("ποΈ Real-time Monitoring"):
gr.Markdown("""
### Live voice emotion analysis during consultation
*Click the microphone button and speak to see real-time emotion detection*
""")
with gr.Row():
with gr.Column(scale=1):
audio_realtime = gr.Audio(
sources=["microphone"],
type="numpy",
label="π€ Live Audio Input",
streaming=False
)
with gr.Column(scale=2):
realtime_output = gr.Markdown(
label="π Real-time Analysis Results",
value="π€ **Ready for real-time analysis**\n\nClick the microphone and speak to see live emotion detection using our AI models."
)
audio_realtime.change(
fn=real_time_analysis,
inputs=[audio_realtime],
outputs=[realtime_output]
)
# Technical Details Tab
with gr.Tab("π¬ Model & Technical Information"):
gr.Markdown(f"""
### AI Models & Architecture
**Current System Status:**
- π₯οΈ **Processing Device**: {analyzer.device}
- π§ ** |