Spaces:
Sleeping
Sleeping
model
Browse files- llava_inference.py +25 -0
llava_inference.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from llava.model.builder import load_pretrained_model
|
2 |
+
from llava.mm_utils import process_images, tokenizer_image_token
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
import torch
|
5 |
+
|
6 |
+
class LLaVAHelper:
|
7 |
+
def __init__(self, model_name="llava-hf/llava-1.5-7b-hf"):
|
8 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
self.model, self.image_processor, _ = load_pretrained_model(model_name, None)
|
10 |
+
self.model.eval()
|
11 |
+
|
12 |
+
def generate_answer(self, image, question):
|
13 |
+
# Preprocess
|
14 |
+
image_tensor = process_images([image], self.image_processor, self.model.config)[0].unsqueeze(0).to("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
prompt = f"###Human: <image>\n{question}\n###Assistant:"
|
16 |
+
input_ids = tokenizer_image_token(prompt, self.tokenizer, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
|
18 |
+
with torch.no_grad():
|
19 |
+
output_ids = self.model.generate(
|
20 |
+
input_ids=input_ids.input_ids,
|
21 |
+
images=image_tensor,
|
22 |
+
max_new_tokens=512
|
23 |
+
)
|
24 |
+
output = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
25 |
+
return output.split("###Assistant:")[-1].strip()
|