|
import gradio as gr |
|
from segmentation import segment_image |
|
import os |
|
import requests |
|
import base64 |
|
|
|
|
|
HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_TOKEN") |
|
API_URL = "https://api-inference.huggingface.co/models/google/medgemma-4b-it" |
|
HEADERS = {"Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}"} |
|
|
|
def query_medgemma(image_path, question): |
|
with open(image_path, "rb") as f: |
|
image_bytes = f.read() |
|
encoded_image = base64.b64encode(image_bytes).decode("utf-8") |
|
encoded_image = f"data:image/png;base64,{encoded_image}" |
|
|
|
payload = { |
|
"inputs": [ |
|
{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "text", "text": question}, |
|
{"type": "image", "image": encoded_image} |
|
] |
|
} |
|
] |
|
} |
|
|
|
response = requests.post(API_URL, headers=HEADERS, json=payload) |
|
if response.ok: |
|
try: |
|
return response.json()[0]["generated_text"][-1]["content"] |
|
except Exception as e: |
|
return f"Parse Error: {str(e)}\nFull Response: {response.json()}" |
|
else: |
|
return f"Error: {response.status_code} - {response.text}" |
|
|
|
|
|
default_image_path = "./image.png" |
|
|
|
def segment_only(image_path): |
|
_, segmented_image = segment_image(image_path) |
|
return segmented_image |
|
|
|
def analyze_with_medgemma(image, question): |
|
return query_medgemma(image, question) |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
image_input = gr.Image(type="filepath", label="Upload Image") |
|
segmented_output = gr.Image(type="numpy", label="Segmented Image") |
|
|
|
image_input.change(fn=segment_only, inputs=image_input, outputs=segmented_output) |
|
|
|
with gr.Column(scale=2): |
|
chatbot = gr.Textbox(label="Ask MedGemma", placeholder="Enter your medical question...") |
|
image_for_analysis = gr.Image(type="filepath", label="Upload image for analysis") |
|
analyze_button = gr.Button("Analyze") |
|
response_output = gr.Textbox(label="Response") |
|
|
|
analyze_button.click(fn=analyze_with_medgemma, inputs=[image_for_analysis, chatbot], outputs=response_output) |
|
|
|
demo.launch() |
|
|