Create medgemma_api.py
Browse files- medgemma_api.py +27 -0
medgemma_api.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import base64
|
3 |
+
|
4 |
+
# 你需要在 Hugging Face Space 的 Secrets 里配置一个名为 HUGGINGFACE_TOKEN 的值
|
5 |
+
HUGGINGFACE_API_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
6 |
+
API_URL = "https://api-inference.huggingface.co/models/google/medgemma-4b-it"
|
7 |
+
HEADERS = {"Authorization": f"Bearer {HUGGINGFACE_API_TOKEN}"}
|
8 |
+
|
9 |
+
def query_medgemma(image_path, question):
|
10 |
+
with open(image_path, "rb") as f:
|
11 |
+
image_bytes = f.read()
|
12 |
+
|
13 |
+
encoded_image = base64.b64encode(image_bytes).decode("utf-8")
|
14 |
+
payload = {
|
15 |
+
"inputs": [
|
16 |
+
{
|
17 |
+
"role": "user",
|
18 |
+
"content": [
|
19 |
+
{"type": "image", "image": encoded_image},
|
20 |
+
{"type": "text", "text": question}
|
21 |
+
]
|
22 |
+
}
|
23 |
+
]
|
24 |
+
}
|
25 |
+
|
26 |
+
response = requests.post(API_URL, headers=HEADERS, json=payload)
|
27 |
+
return response.json()[0]["generated_text"] if response.ok else "Error: Unable to get response."
|