File size: 5,347 Bytes
5df3c06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
import torch.nn as nn
import torch.nn.functional as F
import timm
import numpy as np
import cv2

# -------------------------------
# Define Pyramid Pooling Module (with GroupNorm)
# -------------------------------
class PyramidPoolingModule(nn.Module):
    def __init__(self, in_channels, pool_sizes=[1, 2, 3, 6]):
        super().__init__()
        self.pool_layers = nn.ModuleList([
            nn.Sequential(
                nn.AdaptiveAvgPool2d(pool_size),
                nn.Conv2d(in_channels, in_channels // 4, kernel_size=1, bias=False),
                nn.GroupNorm(num_groups=8, num_channels=in_channels // 4),
                nn.ReLU(inplace=True)
            ) for pool_size in pool_sizes
        ])
        total_channels = in_channels + len(pool_sizes) * (in_channels // 4)
        self.conv = nn.Conv2d(total_channels, in_channels, kernel_size=1, bias=False)

    def forward(self, x):
        pooled_features = [x]
        for layer in self.pool_layers:
            pooled = layer(x)
            pooled = F.interpolate(pooled, size=x.shape[2:], mode='bilinear', align_corners=False)
            pooled_features.append(pooled)
        x = torch.cat(pooled_features, dim=1)
        x = self.conv(x)
        return x

# -------------------------------
# Define UPerNet Decoder (With Dropout)
# -------------------------------
class UPerNetDecoder(nn.Module):
    def __init__(self, encoder_channels, num_classes=1, dropout_rate=0.1):
        super().__init__()
        self.ppm = PyramidPoolingModule(encoder_channels[-1])
        self.lateral_conv2 = nn.Conv2d(encoder_channels[2], encoder_channels[-1], kernel_size=1)
        self.conv3 = nn.Sequential(
            nn.Conv2d(encoder_channels[-1], encoder_channels[2], kernel_size=1),
            nn.Dropout2d(p=dropout_rate)
        )
        self.lateral_conv1 = nn.Conv2d(encoder_channels[1], encoder_channels[2], kernel_size=1)
        self.conv2 = nn.Sequential(
            nn.Conv2d(encoder_channels[2], encoder_channels[1], kernel_size=1),
            nn.Dropout2d(p=dropout_rate)
        )
        self.lateral_conv0 = nn.Conv2d(encoder_channels[0], encoder_channels[1], kernel_size=1)
        self.conv1 = nn.Sequential(
            nn.Conv2d(encoder_channels[1], encoder_channels[0], kernel_size=1),
            nn.Dropout2d(p=dropout_rate)
        )
        self.segmentation_head = nn.Conv2d(encoder_channels[0], num_classes, kernel_size=1)

    def forward(self, features):
        f0, f1, f2, f3 = features
        x3 = self.ppm(f3)
        x3_up = F.interpolate(x3, size=f2.shape[2:], mode="bilinear", align_corners=False)
        fuse2 = x3_up + self.lateral_conv2(f2)
        fuse2 = self.conv3(fuse2)
        fuse2_up = F.interpolate(fuse2, size=f1.shape[2:], mode="bilinear", align_corners=False)
        fuse1 = fuse2_up + self.lateral_conv1(f1)
        fuse1 = self.conv2(fuse1)
        fuse1_up = F.interpolate(fuse1, size=f0.shape[2:], mode="bilinear", align_corners=False)
        fuse0 = fuse1_up + self.lateral_conv0(f0)
        fuse0 = self.conv1(fuse0)
        x_out = F.interpolate(fuse0, size=(224, 224), mode="bilinear", align_corners=False)
        output = self.segmentation_head(x_out)
        return output

# -------------------------------
# Define Swin-Tiny UPerNet Model
# -------------------------------
class SwinTinyUPerNet(nn.Module):
    def __init__(self, num_classes=1, dropout_rate=0.1):
        super().__init__()
        self.encoder = timm.create_model(
            "swin_tiny_patch4_window7_224.ms_in22k_ft_in1k",
            pretrained=True,
            features_only=True
        )
        encoder_channels = self.encoder.feature_info.channels()
        self.decoder = UPerNetDecoder(encoder_channels, num_classes, dropout_rate=dropout_rate)

    def forward(self, x):
        features = self.encoder(x)
        features = [f.permute(0, 3, 1, 2) if f.dim() == 4 else f for f in features]
        output = self.decoder(features)
        return F.interpolate(output, size=(224, 224), mode="bilinear", align_corners=False)

# -------------------------------
# Load the Model
# -------------------------------
def load_model():
    model = SwinTinyUPerNet(num_classes=1)
    model.load_state_dict(torch.load("best_swin_upernet_main.pth", map_location=torch.device("cpu")), strict=False)
    model.eval()
    return model

# -------------------------------
# Enable Dropout at Inference Time
# -------------------------------
def enable_dropout(m):
    if isinstance(m, nn.Dropout) or isinstance(m, nn.Dropout2d):
        m.train()

# -------------------------------
# Perform Inference with MC Dropout
# -------------------------------
def predict_with_uncertainty(image_tensor, num_samples=10):
    model = load_model()
    model.apply(enable_dropout)
    preds_list = []

    with torch.no_grad():
        for _ in range(num_samples):
            preds = torch.sigmoid(model(image_tensor))
            preds_list.append(preds)

    preds_array = torch.stack(preds_list, dim=0)
    preds_mean = preds_array.mean(dim=0).squeeze().cpu().numpy()
    preds_uncertainty = preds_array.std(dim=0).squeeze().cpu().numpy()

    # Normalize uncertainty map
    preds_uncertainty = (preds_uncertainty - preds_uncertainty.min()) / (preds_uncertainty.max() - preds_uncertainty.min() + 1e-8)
    return preds_mean, preds_uncertainty