Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import numpy as np
|
3 |
+
from medsam import MedSAM
|
4 |
+
import SimpleITK as sitk
|
5 |
+
from flask import Flask, request, jsonify
|
6 |
+
|
7 |
+
app = Flask(__name__)
|
8 |
+
model = MedSAM.load_from_checkpoint("/app/medsam_vit_b.pth")
|
9 |
+
|
10 |
+
@app.route('/segment', methods=['POST'])
|
11 |
+
def segment():
|
12 |
+
# 接收前端数据
|
13 |
+
data = request.json
|
14 |
+
image = np.array(data['image'])
|
15 |
+
prompt = data['prompt'] # 格式: [{'type':'point','data':[x,y]}, ...]
|
16 |
+
|
17 |
+
# 预处理图像 (HxW -> HxWx3)
|
18 |
+
img_3c = np.repeat(image[:,:,None], 3, axis=-1)
|
19 |
+
|
20 |
+
# 转换提示格式
|
21 |
+
medsam_prompt = []
|
22 |
+
for p in prompt:
|
23 |
+
if p['type'] == 'point':
|
24 |
+
medsam_prompt.append({'point': p['data'], 'label': 1})
|
25 |
+
elif p['type'] == 'box':
|
26 |
+
medsam_prompt.append({'box': p['data']})
|
27 |
+
|
28 |
+
# 模型推理
|
29 |
+
mask = model.predict(img_3c, medsam_prompt)
|
30 |
+
|
31 |
+
return jsonify({"mask": mask.tolist()})
|
32 |
+
|
33 |
+
if __name__ == '__main__':
|
34 |
+
app.run(host='0.0.0.0', port=7860)
|