Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pip install accelerate
|
2 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
import torch
|
6 |
+
|
7 |
+
model_id = "google/medgemma-4b-it"
|
8 |
+
|
9 |
+
model = AutoModelForImageTextToText.from_pretrained(
|
10 |
+
model_id,
|
11 |
+
torch_dtype=torch.bfloat16,
|
12 |
+
device_map="auto",
|
13 |
+
)
|
14 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
15 |
+
|
16 |
+
# Image attribution: Stillwaterising, CC0, via Wikimedia Commons
|
17 |
+
image_url = "https://upload.wikimedia.org/wikipedia/commons/c/c8/Chest_Xray_PA_3-8-2010.png"
|
18 |
+
image = Image.open(requests.get(image_url, headers={"User-Agent": "example"}, stream=True).raw)
|
19 |
+
|
20 |
+
messages = [
|
21 |
+
{
|
22 |
+
"role": "system",
|
23 |
+
"content": [{"type": "text", "text": "You are an expert radiologist."}]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"role": "user",
|
27 |
+
"content": [
|
28 |
+
{"type": "text", "text": "Describe this X-ray"},
|
29 |
+
{"type": "image", "image": image}
|
30 |
+
]
|
31 |
+
}
|
32 |
+
]
|
33 |
+
|
34 |
+
inputs = processor.apply_chat_template(
|
35 |
+
messages, add_generation_prompt=True, tokenize=True,
|
36 |
+
return_dict=True, return_tensors="pt"
|
37 |
+
).to(model.device, dtype=torch.bfloat16)
|
38 |
+
|
39 |
+
input_len = inputs["input_ids"].shape[-1]
|
40 |
+
|
41 |
+
with torch.inference_mode():
|
42 |
+
generation = model.generate(**inputs, max_new_tokens=200, do_sample=False)
|
43 |
+
generation = generation[0][input_len:]
|
44 |
+
|
45 |
+
decoded = processor.decode(generation, skip_special_tokens=True)
|
46 |
+
print(decoded)
|